CQUniversity Unit Profile

In Progress

Please note that this Unit Profile is still in progress. The content below is subject to change.
ENEE12015 Electrical Power Engineering
Electrical Power Engineering
All details in this unit profile for ENEE12015 have been officially approved by CQUniversity and represent a learning partnership between the University and you (our student).
The information will not be changed unless absolutely necessary and any change will be clearly indicated by an approved correction included in the profile.
General Information

Overview

In this unit, you will model basic electrical power system components using simplified linear equivalent circuits, explain the relationship between power and energy, and calculate power and energy in electrical power networks. You will review electric and magnetic fields and explain their application in power transformers and generation. You will discuss generation, transmission, and distribution of electrical energy. You will apply problem-solving techniques in the analysis of balanced three-phase power circuits using per-unit methodology. You will discuss electrical distribution system components and configurations and apply appropriate mathematical tools to the analysis of power systems. You are expected to use appropriate electrical engineering language in context and to document the process of modeling and analysis. You will present the information, communicate, work, and learn, both individually and in teams, in a professional manner. In this unit, you must complete compulsory practical activities. Refer to the Engineering Undergraduate Moodle site for proposed dates.

Details

Career Level: Undergraduate
Unit Level: Level 2
Credit Points: 6
Student Contribution Band: 8
Fraction of Full-Time Student Load: 0.125

Pre-requisites or Co-requisites

Pre-requisites: ENAE12013 Electrical Components and Circuit Analysis or ENEE12014 Electrical Circuit Analysis.

Important note: Students enrolled in a subsequent unit who failed their pre-requisite unit, should drop the subsequent unit before the census date or within 10 working days of Fail grade notification. Students who do not drop the unit in this timeframe cannot later drop the unit without academic and financial liability. See details in the Assessment Policy and Procedure (Higher Education Coursework).

Offerings For Term 2 - 2024

Bundaberg
Cairns
Gladstone
Mackay
Mixed Mode
Rockhampton

Attendance Requirements

All on-campus students are expected to attend scheduled classes – in some units, these classes are identified as a mandatory (pass/fail) component and attendance is compulsory. International students, on a student visa, must maintain a full time study load and meet both attendance and academic progress requirements in each study period (satisfactory attendance for International students is defined as maintaining at least an 80% attendance record).

Residential Schools

This unit has a Compulsory Residential School for distance mode students and the details are:
Click here to see your Residential School Timetable.

Class and Assessment Overview

Recommended Student Time Commitment

Each 6-credit Undergraduate unit at CQUniversity requires an overall time commitment of an average of 12.5 hours of study per week, making a total of 150 hours for the unit.

Class Timetable

Bundaberg, Cairns, Emerald, Gladstone, Mackay, Rockhampton, Townsville
Adelaide, Brisbane, Melbourne, Perth, Sydney

Assessment Overview

Assessment Grading

This is a graded unit: your overall grade will be calculated from the marks or grades for each assessment task, based on the relative weightings shown in the table above. You must obtain an overall mark for the unit of at least 50%, or an overall grade of ‘pass’ in order to pass the unit. If any ‘pass/fail’ tasks are shown in the table above they must also be completed successfully (‘pass’ grade). You must also meet any minimum mark requirements specified for a particular assessment task, as detailed in the ‘assessment task’ section (note that in some instances, the minimum mark for a task may be greater than 50%). Consult the University’s Grades and Results Policy for more details of interim results and final grades.

Previous Student Feedback

Feedback, Recommendations and Responses

Every unit is reviewed for enhancement each year. At the most recent review, the following staff and student feedback items were identified and recommendations were made.

Feedback from Unit evaluation.

Feedback

Students appreciated the lecturer for this unit was very cooperative, knowledgeable, and encouraged with a positive learning atmosphere.

Recommendation

Continue this good practice for student success.

Feedback from Unit evaluation.

Feedback

Students appreciated that the Quizzes were good and helped maintain attention to the subject material.

Recommendation

Continue this good practice.

Feedback from Unit evaluation and individual discussion.

Feedback

Students mentioned that the simulation software (MATLAB) to evaluate solar cell configurations took a bit longer time to understand the software. Requested a tutorial on this software.

Recommendation

Should provide a tutorial on this software (MATLAB).

Unit Learning Outcomes
On successful completion of this unit, you will be able to:
  1. Analyse single and three-phase power networks using relevant problem-solving techniques including per-unit methodology
  2. Explain the application of the electric and magnetic fields in power transformers and power generation
  3. Discuss generation, transmission, and distribution system components including renewable energy generation and integration
  4. Use laboratory procedures and appropriate simulation tools for the analysis of power systems
  5. Present the process of power system modeling and analysis professionally
  6. Communicate, work, and learn, both individually and in teams, in a professional manner.

The Learning Outcomes for this unit are linked with the Engineers Australia's Stage 1 Competency Standards for Professional Engineers in the areas of 1. Knowledge and Skill Base, 2. Engineering Application Ability and 3. Professional and Personal Attributes at the following levels:

Intermediate
1.1 Comprehensive, theory-based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline. (LO: 1I 2I 3I 4I )
1.2 Conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences which underpin the engineering discipline. (LO: 1I 2I 3I 4I )
1.3 In-depth understanding of specialist bodies of knowledge within the engineering discipline. (LO: 1I 2I 3I 4I )
1.4 Discernment of knowledge development and research directions within the engineering discipline. (LO: 1I 2I 3I 4I )
1.6 Understanding of the scope, principles, norms, accountabilities and bounds of sustainable engineering practice in the specific discipline. (LO: 1I 2I 3I 4I )
2.1 Application of established engineering methods to complex engineering problem-solving. (LO: 1I 2I 3I 4I )
3.2 Effective oral and written communication in professional and lay domains. (LO: 5I 6I )
3.6 Effective team membership and team leadership. (LO: 6I )

Advanced
1.5 Knowledge of engineering design practice and contextual factors impacting the engineering discipline. (LO: 3A 4N )

Note: LO refers to the Learning Outcome number(s) which link to the competency and the levels: N – Introductory, I – Intermediate and A - Advanced.

Refer to the Engineering Undergraduate Course Moodle site for further information on the Engineers Australia's Stage 1 Competency Standard for Professional Engineers and course level mapping information
https://moodle.cqu.edu.au/course/view.php?id=1511


Alignment of Learning Outcomes, Assessment and Graduate Attributes
N/A Level
Introductory Level
Intermediate Level
Graduate Level
Professional Level
Advanced Level

Alignment of Assessment Tasks to Learning Outcomes

Assessment Tasks Learning Outcomes
1 2 3 4 5 6
1 - Written Assessment - 20%
2 - Online Quiz(zes) - 20%
3 - Practical and Written Assessment - 20%
4 - Online Test - 40%

Alignment of Graduate Attributes to Learning Outcomes

Graduate Attributes Learning Outcomes
1 2 3 4 5 6
1 - Communication
2 - Problem Solving
3 - Critical Thinking
4 - Information Literacy
5 - Team Work
6 - Information Technology Competence
7 - Cross Cultural Competence
8 - Ethical practice
9 - Social Innovation
10 - Aboriginal and Torres Strait Islander Cultures
Textbooks and Resources

Information for Textbooks and Resources has not been released yet.

This information will be available on Monday 17 June 2024
Academic Integrity Statement

Information for Academic Integrity Statement has not been released yet.

This unit profile has not yet been finalised.