Profile information current as at 11/04/2024 08:53 am All details in this unit profile for COIT20277 have been officially approved by CQUniversity and represent a learning partnership between the University and you (our student). The information will not be changed unless absolutely necessary and any change will be clearly indicated by an approved correction included in the profile. # **General Information** # Overview Artificial intelligence is closely related to the field called soft computing which provides a foundation for the conception, design, and deployment of intelligent systems directed towards intelligence and autonomy. This unit introduces you to the fundamental concepts of artificial intelligence in the three prominent areas of fuzzy systems, artificial neural networks, and evolutionary computation. You will be introduced to topics of genetic algorithms, evolutionary programming, and genetic programming. You will also be introduced to the most commonly used neural network paradigms. You will learn the concepts of fuzzy sets and fuzzy logic, and approximate reasoning, as part of fuzzy systems. The theoretical concepts will be reinforced with hands-on experience during computer lab tutorials. # **Details** Career Level: Postgraduate Unit Level: Level 9 Credit Points: 6 Student Contribution Band: 8 Fraction of Full-Time Student Load: 0.125 # Pre-requisites or Co-requisites Pre-requisite: COIT20245 Introduction to Programming Important note: Students enrolled in a subsequent unit who failed their pre-requisite unit, should drop the subsequent unit before the census date or within 10 working days of Fail grade notification. Students who do not drop the unit in this timeframe cannot later drop the unit without academic and financial liability. See details in the Assessment Policy and Procedure (Higher Education Coursework). # Offerings For Term 2 - 2020 - Brisbane - Melbourne - Online - Sydney # Attendance Requirements All on-campus students are expected to attend scheduled classes – in some units, these classes are identified as a mandatory (pass/fail) component and attendance is compulsory. International students, on a student visa, must maintain a full time study load and meet both attendance and academic progress requirements in each study period (satisfactory attendance for International students is defined as maintaining at least an 80% attendance record). # Website This unit has a website, within the Moodle system, which is available two weeks before the start of term. It is important that you visit your Moodle site throughout the term. Please visit Moodle for more information. # Class and Assessment Overview # Recommended Student Time Commitment Each 6-credit Postgraduate unit at CQUniversity requires an overall time commitment of an average of 12.5 hours of study per week, making a total of 150 hours for the unit. # Class Timetable ### **Regional Campuses** Bundaberg, Cairns, Emerald, Gladstone, Mackay, Rockhampton, Townsville #### **Metropolitan Campuses** Adelaide, Brisbane, Melbourne, Perth, Sydney # **Assessment Overview** 1. Written Assessment Weighting: 30% 2. Written Assessment Weighting: 25% 3. Written Assessment Weighting: 45% # Assessment Grading This is a graded unit: your overall grade will be calculated from the marks or grades for each assessment task, based on the relative weightings shown in the table above. You must obtain an overall mark for the unit of at least 50%, or an overall grade of 'pass' in order to pass the unit. If any 'pass/fail' tasks are shown in the table above they must also be completed successfully ('pass' grade). You must also meet any minimum mark requirements specified for a particular assessment task, as detailed in the 'assessment task' section (note that in some instances, the minimum mark for a task may be greater than 50%). Consult the <u>University's Grades and Results Policy</u> for more details of interim results and final grades. # **CQUniversity Policies** # All University policies are available on the CQUniversity Policy site. You may wish to view these policies: - Grades and Results Policy - Assessment Policy and Procedure (Higher Education Coursework) - Review of Grade Procedure - Student Academic Integrity Policy and Procedure - Monitoring Academic Progress (MAP) Policy and Procedure Domestic Students - Monitoring Academic Progress (MAP) Policy and Procedure International Students - Student Refund and Credit Balance Policy and Procedure - Student Feedback Compliments and Complaints Policy and Procedure - Information and Communications Technology Acceptable Use Policy and Procedure This list is not an exhaustive list of all University policies. The full list of University policies are available on the <u>CQUniversity Policy site</u>. # Previous Student Feedback # Feedback, Recommendations and Responses Every unit is reviewed for enhancement each year. At the most recent review, the following staff and student feedback items were identified and recommendations were made. # Feedback from Student evaluation #### **Feedback** Students appreciated the fact that this unit introduced the three areas of computational intelligence - evolutionary, neural, and fuzzy. #### Recommendation Maintain the current topic and contents. # Feedback from Student evaluation #### **Feedback** Provide more explanations in tutorials for the example source code given. #### Recommendation Inform teaching team to provide walk through of some of the example solutions. # **Unit Learning Outcomes** # On successful completion of this unit, you will be able to: - 1. Model internal representation, performance criteria, and computational components identifying elements of authentic problems to apply neural, fuzzy or evolutionary computation - 2. Create effective and efficient computational intelligence solutions to authentic problems - 3. Evaluate the solution to a computational intelligence problem, analysing the merits and demerits of the chosen approach - 4. Investigate the potential to enhance the model using one or more computational intelligence techniques. The Australian Computer Society (ACS) recognises the Skills Framework for the Information Age (SFIA). SFIA provides a consistent definition of ICT skills. SFIA is adopted by organisations, governments, and individuals in many countries and is increasingly used when developing job descriptions and role profiles. ACS members can use the tool MySFIA to build a skills profile at https://www.acs.org.au/professionalrecognition/mysfia-b2c.html. This unit contributes to the following workplace skills as defined by SFIA. The SFIA code is included: - Data modelling and design (DTAN) - Software design (SWDN) - Programming/Software Development (PROG) - Testing (TEST) - Application Support (ASUP) # Alignment of Learning Outcomes, Assessment and Graduate Attributes # Alignment of Assessment Tasks to Learning Outcomes | Assessment Tasks | | Learning Outcomes | | | | | | |------------------|--------------------------|-------------------|---|---|---|---|--| | | | | 1 | 2 | 3 | 4 | | | 1 - 1 | Writton Assessment - 30% | | | | | | | | Assessment Tasks Learn | | | | ning Outcomes | | | | | | |--|-------------------|-----|---|---------------|---|---|---|---|--| | | : | 1 | 7 | 2 | 3 | 3 | 4 | | | | 2 - Written Assessment - 25% | | | | • | • | • | • | | | | 3 - Written Assessment - 45% | • | • | | | | • | • | | | | Alignment of Graduate Attributes to Lear | nina Outcor | nes | | | | | | | | | Graduate Attributes | Learning Outcomes | | | | | | | | | | | | | 1 | 2 | | 3 | 4 | ı | | | 1 - Knowledge | | | 0 | o | | 0 | | , | | | 2 - Communication | | | 0 | 0 | | 0 | C | , | | | 3 - Cognitive, technical and creative skills | | | 0 | ٥ | | 0 | C | • | | | 4 - Research | | | | | | | C | • | | | 5 - Self-management | | | 0 | ٥ | | 0 | C | • | | | 6 - Ethical and Professional Responsibility | | | | | | | | | | | 7 - Leadership | | | | | | | | | | | 8 - Aboriginal and Torres Strait Islander Cultures | | | | | | | | | | | Alignment of Assessment Tasks to Gradu | ate Attribut | es | | | | | | | | | Assessment Tasks Graduate Attributes | | | | | | | | | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | | 1 - Written Assessment - 30% | o | o | ۰ | | o | | | | | | 2 - Written Assessment - 25% | o | o | ۰ | | 0 | | | | | | | | | | | | | | | | # Textbooks and Resources # **Textbooks** COIT20277 #### **Prescribed** ### **Computational Intelligence: Concepts to Implementations** (2007) Authors: Russell C. Eberhart, Yuhui Shi Morgan Kaufmann Publishers Burlington , MA , USA ISBN: 978-1-55860-759-0 Binding: Hardcover #### **Additional Textbook Information** If you prefer to study with a paper copy, they are available at the CQUni Bookshop here: http://bookshop.cqu.edu.au (search on the Unit code). eBooks are available at the publisher's website. # View textbooks at the CQUniversity Bookshop # **IT Resources** # You will need access to the following IT resources: - CQUniversity Student Email - Internet - Unit Website (Moodle) - R Studio and R - Java SE 11 - NetBeans IDE 11 # Referencing Style All submissions for this unit must use the referencing style: <u>Harvard (author-date)</u> For further information, see the Assessment Tasks. # **Teaching Contacts** Ayub Bokani Unit Coordinator a.bokani@cqu.edu.au # Schedule | Week | 1 - | 13 | lul | 2020 | |------|-----|----|-----|------| |------|-----|----|-----|------| Module/Topic Chapter Events and Submissions/Topic **Evolutionary Computation Concepts** and Paradigms Chapter 2 and Part of Chapter 3 Week 2 - 20 Jul 2020 Module/Topic Chapter Events and Submissions/Topic Chapter 3, and Chapter 3 and 4 from Evolutionary Algorithms: Introduction to Evolutionary Representation Computing by A. E. Eiben and J. E. mith Smith Week 3 - 27 Jul 2020 Module/Topic Chapter Events and Submissions/Topic | Fitness Selection and Population management | 5 Introduction to Evolutionary
Computing by A. E. Eiben and J. E.
Smith | | | | | | |---|---|---|--|--|--|--| | Week 4 - 03 Aug 2020 | | | | | | | | Module/Topic | Chapter | Events and Submissions/Topic | | | | | | Neural Networks: Components and
Terminology | Chapter 5 | | | | | | | Week 5 - 10 Aug 2020 | | | | | | | | Module/Topic | Chapter | Events and Submissions/Topic | | | | | | Neural Networks: Adaptation and
Learning | Chapter 5 | Written Assessment Due: Week 5
Friday (14 Aug 2020) 11:45 pm AEST | | | | | | Vacation Week - 17 Aug 2020 | | | | | | | | Module/Topic | Chapter | Events and Submissions/Topic | | | | | | Week 6 - 24 Aug 2020 | | | | | | | | Module/Topic | Chapter | Events and Submissions/Topic | | | | | | Neural Networks: Adaptation and
Implementation | 5 and 6 | | | | | | | Week 7 - 31 Aug 2020 | | | | | | | | Module/Topic | Chapter | Events and Submissions/Topic | | | | | | Fuzzy Systems: Fuzzy Sets and Fuzzy
Logic | Chapter 7 | | | | | | | Week 8 - 07 Sep 2020 | | | | | | | | Module/Topic | Chapter | Events and Submissions/Topic | | | | | | Fuzzy Systems: Approximate
Reasoning | Chapter 7 | Written Assessment Due: Week 8 Friday (11 Sept 2020) 11:45 pm AEST | | | | | | Week 9 - 14 Sep 2020 | | | | | | | | Module/Topic | Chapter | Events and Submissions/Topic | | | | | | Fuzzy Decision Making | Chapter 15 Fuzzy sets and fuzzy logic (Vol. 4) Klir, G. and Yuan, B., 1995. | | | | | | | Week 10 - 21 Sep 2020 | | | | | | | | Module/Topic | Chapter | Events and Submissions/Topic | | | | | | Fuzzy Systems: Fuzzy Controller | 7 | | | | | | | Week 11 - 28 Sep 2020 | | | | | | | | Module/Topic | Chapter | Events and Submissions/Topic | | | | | | Fuzzy Systems: Implementations | Chapter 8 | | | | | | | Week 12 - 05 Oct 2020 | | | | | | | | Module/Topic | Chapter | Events and Submissions/Topic | | | | | | Performance Metrics | Chapter 10 | Written Assessment Due: Week 12 Friday (9 Oct 2020) 11:45 pm AEST | | | | | | Review/Exam Week - 12 Oct 2020 | | | | | | | | Module/Topic | Chapter | Events and Submissions/Topic | | | | | | Exam Week - 19 Oct 2020 | | | | | | | | Module/Topic | Chapter | Events and Submissions/Topic | | | | | # **Term Specific Information** Unit Coordinator: Dr Ayub Bokani Email: a.bokani@cqu.edu.au # **Assessment Tasks** # 1 Written Assessment # **Assessment Type** Written Assessment #### **Task Description** In this assignment you will demonstrate your ability to apply evolutionary computing concepts to hypothetical problem, and develop a software application. This assessment task is to design, code, debug, and test using the topics covered in Weeks 1-3. Further details are in the Assignment 1 Specification document available from the Unit website. #### **Assessment Due Date** Week 5 Friday (14 Aug 2020) 11:45 pm AEST #### **Return Date to Students** Week 7 Friday (4 Sept 2020) # Weighting 30% #### **Assessment Criteria** - 1. Appropriate application of evolutionary computation concepts to the given problem - 2. Correct modelling of problem solution following evolutionary computation concepts - 3. Effective Source code development applying correct algorithmic steps - 4. Effective use of good programming practice/techniques - 5. Rigorous testing to evaluate the correctness of the model and algorithm - 6. Demonstration of potential practical applications in a written report ### **Referencing Style** • Harvard (author-date) #### **Submission** Online # **Submission Instructions** Submit only one zip file (.zip) containing the source code files (.java) and document file (.doc or .docx). ### **Learning Outcomes Assessed** - Model internal representation, performance criteria, and computational components identifying elements of authentic problems to apply neural, fuzzy or evolutionary computation - Create effective and efficient computational intelligence solutions to authentic problems #### **Graduate Attributes** - Knowledge - Communication - Cognitive, technical and creative skills - Self-management # 2 Written Assessment #### **Assessment Type** Written Assessment #### **Task Description** In this assignment you will demonstrate your ability to model a neural network to solve a hypothetical problem, and develop a software application implementing your model. This assessment task is to design, code, debug, and test using the topics covered in Weeks 4-7. Further details are available in the Assignment 2 Specification document available from the Unit website. #### **Assessment Due Date** Week 8 Friday (11 Sept 2020) 11:45 pm AEST ### **Return Date to Students** Week 10 Friday (25 Sept 2020) #### Weighting 25% #### **Assessment Criteria** - 1. Correct modelling of problem solution following artificial neural network concepts - 2. Effective Source code development applying correct algorithmic steps - 3. Effective use of good programming practice/techniques - 4. Rigorous testing to evaluate the correctness of the model and algorithm - 5. Demonstration of potential practical applications in a written report # **Referencing Style** • Harvard (author-date) #### **Submission** Online #### **Submission Instructions** Submit a zip file (.zip) containing the source code files (.java) and the report document file (.doc or .docx). #### **Learning Outcomes Assessed** - Create effective and efficient computational intelligence solutions to authentic problems - Evaluate the solution to a computational intelligence problem, analysing the merits and demerits of the chosen approach - Investigate the potential to enhance the model using one or more computational intelligence techniques. # **Graduate Attributes** - Knowledge - Communication - Cognitive, technical and creative skills - Self-management # 3 Written Assessment #### **Assessment Type** Written Assessment # **Task Description** In this assignment you will demonstrate your problem solving and programming skills to apply fuzzy system concepts to a hypothetical problem, and develop a software application. This assessment task is to design, code, debug, and test using the topics covered in Weeks 8-11. Further details are in the Assignment 3 Specification document available from the Unit website. #### **Assessment Due Date** Week 12 Friday (9 Oct 2020) 11:45 pm AEST # **Return Date to Students** Review/Exam Week Friday (16 Oct 2020) #### Weighting 45% # **Assessment Criteria** 1. Correct modelling of problem solution following fuzzy system concepts - 2. Effective Source code development for correct implementation of the model - 3. Effective use of good programming practice/techniques - 4. Rigorous testing to evaluate the correctness of the model and algorithm - 5. Suggestions to enhance the model combining one more computational intelligence technique to improve speed/accuracy - 6. Write a report on applicability of the enhanced model in real world applications that will also promote social innovation # **Referencing Style** • Harvard (author-date) #### **Submission** Online #### **Submission Instructions** Submit a zip file (.zip) containing the source code files (.java) and the report document file (.doc or .docx). # **Learning Outcomes Assessed** - Model internal representation, performance criteria, and computational components identifying elements of authentic problems to apply neural, fuzzy or evolutionary computation - Evaluate the solution to a computational intelligence problem, analysing the merits and demerits of the chosen approach - Investigate the potential to enhance the model using one or more computational intelligence techniques. #### **Graduate Attributes** - Knowledge - Communication - Cognitive, technical and creative skills - Research - Self-management # **Academic Integrity Statement** As a CQUniversity student you are expected to act honestly in all aspects of your academic work. Any assessable work undertaken or submitted for review or assessment must be your own work. Assessable work is any type of work you do to meet the assessment requirements in the unit, including draft work submitted for review and feedback and final work to be assessed. When you use the ideas, words or data of others in your assessment, you must thoroughly and clearly acknowledge the source of this information by using the correct referencing style for your unit. Using others' work without proper acknowledgement may be considered a form of intellectual dishonesty. Participating honestly, respectfully, responsibly, and fairly in your university study ensures the CQUniversity qualification you earn will be valued as a true indication of your individual academic achievement and will continue to receive the respect and recognition it deserves. As a student, you are responsible for reading and following CQUniversity's policies, including the **Student Academic Integrity Policy and Procedure**. This policy sets out CQUniversity's expectations of you to act with integrity, examples of academic integrity breaches to avoid, the processes used to address alleged breaches of academic integrity, and potential penalties. # What is a breach of academic integrity? A breach of academic integrity includes but is not limited to plagiarism, self-plagiarism, collusion, cheating, contract cheating, and academic misconduct. The Student Academic Integrity Policy and Procedure defines what these terms mean and gives examples. #### Why is academic integrity important? A breach of academic integrity may result in one or more penalties, including suspension or even expulsion from the University. It can also have negative implications for student visas and future enrolment at CQUniversity or elsewhere. Students who engage in contract cheating also risk being blackmailed by contract cheating services. ### Where can I get assistance? For academic advice and guidance, the <u>Academic Learning Centre (ALC)</u> can support you in becoming confident in completing assessments with integrity and of high standard. #### What can you do to act with integrity? #### **Be Honest** If your assessment task is done by someone else, it would be dishonest of you to claim it as your own #### Seek Help If you are not sure about how to cite or reference in essays, reports etc, then seek help from your lecturer, the library or the Academic Learning Centre (ALC) ### **Produce Original Work** Originality comes from your ability to read widely, think critically, and apply your gained knowledge to address a question or problem