Profile information current as at 25/04/2024 08:40 am All details in this unit profile for ENEC14016 have been officially approved by CQUniversity and represent a learning partnership between the University and you (our student). The information will not be changed unless absolutely necessary and any change will be clearly indicated by an approved correction included in the profile. ### **General Information** ### Overview This project-based learning unit prepares you to describe and explain the fundamental concepts and characteristics of traffic engineering systems. You will be able to develop strategies for managing and controlling traffic, identify safety issues and recommend solutions. You will be able to analyse and design intersections. You will use ethical decision-making processes to design and document pavement requirements. You will apply design codes and manuals to common design problems involving, intersection design and pavement design. You are required to work, learn and communicate effectively in a professional manner, alone and in project teams. You are required to use information literacy skills proficiently to investigate and prepare oral presentations and formal technical reports. If you are enrolled in distance mode, you will be required to attend a residential school during the term. ### Details Career Level: Undergraduate Unit Level: Level 4 Credit Points: 12 Student Contribution Band: 8 Fraction of Full-Time Student Load: 0.25 ### Pre-requisites or Co-requisites Prerequisites: [MATH11218 OR MATH11219] AND ENEC12011 Important note: Students enrolled in a subsequent unit who failed their pre-requisite unit, should drop the subsequent unit before the census date or within 10 working days of Fail grade notification. Students who do not drop the unit in this timeframe cannot later drop the unit without academic and financial liability. See details in the Assessment Policy and Procedure (Higher Education Coursework). # Offerings For Term 1 - 2019 - Bundaberg - Cairns - Gladstone - Mackay - Mixed Mode - Rockhampton ## **Attendance Requirements** All on-campus students are expected to attend scheduled classes – in some units, these classes are identified as a mandatory (pass/fail) component and attendance is compulsory. International students, on a student visa, must maintain a full time study load and meet both attendance and academic progress requirements in each study period (satisfactory attendance for International students is defined as maintaining at least an 80% attendance record). ### Residential Schools This unit has a Compulsory Residential School for distance mode students and the details are: Click here to see your <u>Residential School Timetable</u>. ### Website This unit has a website, within the Moodle system, which is available two weeks before the start of term. It is important that you visit your Moodle site throughout the term. Please visit Moodle for more information. ### Class and Assessment Overview ### Recommended Student Time Commitment Each 12-credit Undergraduate unit at CQUniversity requires an overall time commitment of an average of 25 hours of study per week, making a total of 300 hours for the unit. ### Class Timetable ### **Regional Campuses** Bundaberg, Cairns, Emerald, Gladstone, Mackay, Rockhampton, Townsville #### **Metropolitan Campuses** Adelaide, Brisbane, Melbourne, Perth, Sydney ### **Assessment Overview** Portfolio Weighting: 50% Portfolio Weighting: 50% ## **Assessment Grading** This is a graded unit: your overall grade will be calculated from the marks or grades for each assessment task, based on the relative weightings shown in the table above. You must obtain an overall mark for the unit of at least 50%, or an overall grade of 'pass' in order to pass the unit. If any 'pass/fail' tasks are shown in the table above they must also be completed successfully ('pass' grade). You must also meet any minimum mark requirements specified for a particular assessment task, as detailed in the 'assessment task' section (note that in some instances, the minimum mark for a task may be greater than 50%). Consult the <u>University's Grades and Results Policy</u> for more details of interim results and final grades. # **CQUniversity Policies** ### All University policies are available on the CQUniversity Policy site. You may wish to view these policies: - Grades and Results Policy - Assessment Policy and Procedure (Higher Education Coursework) - Review of Grade Procedure - Student Academic Integrity Policy and Procedure - Monitoring Academic Progress (MAP) Policy and Procedure Domestic Students - Monitoring Academic Progress (MAP) Policy and Procedure International Students - Student Refund and Credit Balance Policy and Procedure - Student Feedback Compliments and Complaints Policy and Procedure - Information and Communications Technology Acceptable Use Policy and Procedure This list is not an exhaustive list of all University policies. The full list of University policies are available on the CQUniversity Policy site. ### Previous Student Feedback ### Feedback, Recommendations and Responses Every unit is reviewed for enhancement each year. At the most recent review, the following staff and student feedback items were identified and recommendations were made. ### Feedback from Student Course Evaluation #### **Feedback** The Moodle site format with Icon to aid navigation was reported as the best aspect of the unit. It was graded 4. out of 5. #### Recommendation The format of the Moodle site with Icon aiding navigation will be implemented across all units delivered by the lecturer. ### Feedback from Student Course Evaluation #### Feedback Quick response time to student. #### Recommendation The good practice of encouraging students to use the forum in asking questions was continued. The practice of reviewing posts on the Q & A forum daily, with the view to promptly respond, will be continued. ### Feedback from Student Course Evaluation ### **Feedback** Clarity of the assessment need to be improved. #### Recommendation The capacity analysis assessment will be redesigned so that it will no longer be an online answering system. Students will This will get customised feedback to address individual student associated errors. ### Feedback from Student Course Evaluation ### **Feedback** Assessment return to be improved. ### Recommendation From next year offer it will be ensured the students that submit assessment on time will recieve feedback within 14 days. # **Unit Learning Outcomes** ### On successful completion of this unit, you will be able to: - 1. Analyse traffic flows and describe the effect of key traffic flow parameters and their inter-relationships - 2. Apply systematic approaches to conduct capacity analysis and level of-service of roadways and intersections - 3. Evaluate the pavement sublayer materials properties using appropriate Australian guidelines - 4. Design structural road pavements using appropriate Australian guidelines - 5. Demonstrate a professional level of communication and team work The Learning Outcomes for this unit are linked with Engineers Australia's Stage 1 Competency Standard. # Alignment of Learning Outcomes, Assessment and Graduate Attributes # Alignment of Assessment Tasks to Learning Outcomes | Assessment Tasks | 1 | Learning Outcomes | | | | | | | | | | |-----------------------------------------------------|-------------|---------------------|-----|---|---|-------------------|---|---|---|----|--| | | | 1 | | 2 | | 3 | | 4 | | 5 | | | 1 - Portfolio - 50% | | • | | • | | | | | | • | | | 2 - Portfolio - 50% | | | | | | • | | • | | • | | | Alignment of Graduate Attributes to Lea | rnina Outa | on | าคร | | | | | | | | | | Graduate Attributes | | | | | | Learning Outcomes | | | | | | | | | | | | | 1 | 2 | 3 | 4 | 5 | | | 1 - Communication | | | | | | • | • | • | • | • | | | 2 - Problem Solving | | | | | | • | • | • | • | • | | | 3 - Critical Thinking | | | | | | • | • | • | • | • | | | 4 - Information Literacy | | | | | | • | • | • | • | • | | | 5 - Team Work | | | | | | • | • | • | • | • | | | 6 - Information Technology Competence | | | | | | • | • | • | • | • | | | 7 - Cross Cultural Competence | | | | | | • | • | • | • | • | | | 8 - Ethical practice | | | | | | • | • | • | • | • | | | 9 - Social Innovation | | | | | | | | | | | | | 10 - Aboriginal and Torres Strait Islander Cultures | | | | | | | | | | | | | Alignment of Assessment Tasks to Gradu | uate Attrib | oute | es | | | | | | | | | | Assessment Tasks | | Graduate Attributes | | | | | | | | | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | | 1 - Portfolio - 50% | • | • | • | • | • | • | • | • | | | | | 2 - Portfolio - 50% | • | • | • | • | • | • | • | • | | | | ### Textbooks and Resources ### **Textbooks** ENEC14016 ### **Supplementary** ### Traffic and Highway Engineering, Enhanced SI Edition Edition: 5 Authors: Nicholas J. Garber & Lester A. Hoel Cengage Learning US Stamford, CT 06902 , USA ISBN: 9781337631044 Binding: Paperback ### **Additional Textbook Information** Copies are available to purchase at the CQUni Bookshop here: http://bookshop.cqu.edu.au (search on the Unit) ### View textbooks at the CQUniversity Bookshop ### **IT Resources** ### You will need access to the following IT resources: - CQUniversity Student Email - Internet - Unit Website (Moodle) - SIDRA - Pavement Design Software CIRCLY # Referencing Style All submissions for this unit must use the referencing style: <u>Harvard (author-date)</u> For further information, see the Assessment Tasks. ## **Teaching Contacts** ### Jerome Egwurube Unit Coordinator j.egwurube@cqu.edu.au ### Schedule ### Week 1: Traffic Flow Relationship - 11 Mar 2019 Module/Topic Chapter Events and Submissions/Topic Traffic & Highway Engineering by Garber and Hoel SI Edition Chapter 6; Guide to Traffic Management Part 2: Traffic Theory (AGTM02-15) Chapter 2 **Basic Traffic Variables and** Traffic Flow Relationships Relationships 3. Guide to Traffic Management Part 2: Traffic Theory (AGTM02-15) Commentary 1 & 2 4. <u>Guide to Traffic Management Part 2:</u> <u>Traffic Theory (AGTM02-15) Chapter 7</u> ### Week 2: Capacity and Level of Service Concepts - 18 Mar 2019 Module/Topic Chapter Events and Submissions/Topic 1. Highway Capacity Manual (2016) Chapters 4 &5; Capacity and Level of Service Concepts Highway Capacity Analysis 2. Guide to Traffic Management Part 3: **Traffic Studies and Analysis** (AGTM03-17) Chapter 3 & 4 Traffic Engineering Portfolio Quiz 1 due on Friday 22/03/19 @17:00 Week 3: Capacity Analysis I - 25 Mar 2019 Module/Topic **Events and Submissions/Topic** 1. Highway Capacity Manual (2016) Chapters 12; 2. Guide to Traffic Management Part 3: **Traffic Studies and Analysis** (AGTM03-17) Chapter 4 3. Traffic & Highway Engineering by Garber and Hoel SI 5th Edition Chapter 9 pages 465 to 493 Traffic Engineering Portfolio Quiz 2 due Friday 29/03/19 @17:00 Week 4: Capacity Analysis II - 01 Apr 2019 Module/Topic Chapter **Events and Submissions/Topic** 1. Highway Capacity Manual (2016) Chapters 10 & 11 2. Guide to Traffic Management Part 3: **Traffic Studies and Analysis** Freeway Capacity Analysis (AGTM03-17) Chapter 4 3. Traffic & Highway Engineering by Garber and Hoel SI 5th Edition Chapter 9 pages 447 to 465 Week 5: Capacity Analysis III - 08 Apr 2019 Module/Topic Chapter **Events and Submissions/Topic** Highway Capacity Manual (2016) Freeway Capacity Analysis: Merge, Chapters 14 Diverge and Weaving Segment Vacation Week - 15 Apr 2019 Module/Topic Chapter **Events and Submissions/Topic** Week 6:Signalised & Unsignalised Intersection Capacity Analysis - 22 Apr 2019 Module/Topic Chapter **Events and Submissions/Topic** > 1. Guide to Traffic Management Part 3: Traffic Studies and Analysis (AGTM03-17) Chapter 6 2. Guide to Traffic Management Part 6: Intersection, Interchanges and Signalised & Unsignalised Intersection Capacity Analysis Crossing (AGTM06-17) Chapter 4 3. Guide to Traffic Management Part 6: due on Friday 26/04/19 @17:00 Intersection, Interchanges and Crossing (AGTM06-17) Chapter 5 4. Traffic & Highway Engineering by Garber and Hoel SI 5th Edition Chapter 8 & 10 Week 7: Design of Flexible Pavement I - 29 Apr 2019 Module/Topic Chapter **Events and Submissions/Topic** **Guide to Pavement Technology Part 2:** Design of Flexible Pavement I Pavement Structural Design (AGPT02-17) **Chapter 8**; **Traffic Engineering Porfolio** Due: Week 7 Friday (3 May 2019) 5:00 pm Traffic Engineering Portfolio Quiz 3 **AEST** Week 8:Design of Flexible Pavement II - 06 May 2019 Module/Topic **Events and Submissions/Topic** **Guide to Pavement Technology Part 2:** Design of Flexible Pavement II Pavement Structural Design (AGPT02-17) Chapter 8: Week 9:Design of Rigid Pavement I - 13 May 2019 Module/Topic Chapter Events and Submissions/Topic Design of Rigid Pavement I Guide to Pavement Technology Part 2: Pavement Structural Design (AGPT02-17) Chapter 9; Week 10:Design of Rigid Pavement II - 20 May 2019 Module/Topic Chapter Events and Submissions/Topic Guide to Pavement Technology Part 2: Design of Rigid Pavement II Pavement Structural Design (AGPT02-17) **Chapter 9**; Week 11:Design of Structural Overlay - 27 May 2019 Module/Topic Chapter Events and Submissions/Topic Guide to Pavement Technology Part 5: Pavement Evaluation and Design (AGPT05-11) Chapter 6 & 7 Week 12:Review - 03 Jun 2019 Design of Overlay Module/Topic Chapter Events and Submissions/Topic Pavement Design Portfolio Quiz due date on Friday 07/06/19 @17:00 **Pavement Design** Due: Week 12 Monday (3 June 2019) 11:45 pm AEST Review/Exam Week - 10 Jun 2019 Module/Topic Chapter Events and Submissions/Topic **Exam Week - 17 Jun 2019** Module/Topic Chapter Events and Submissions/Topic # Term Specific Information #### **General Information** - 1. Answer Moodle quiz in the relevant modules. More detail are provided in the Moodle web-page - 2. Additional unit details are provided in the Moodle unit page - 3. Create an account to access free copies of relevant Austroad publications for the unit https://austroads.com.au/create-an-account #### **Communication with Lecturer** All unit related questions must be asked through appropriate forums or during the scheduled class time. No email will be responded for any quarries related to this unit unless those are private in circumstances. All emails related to this unit should have the unit code (ENEC14016) in the subject line. Any email without unit code in the subject line may not be responded. Example: ENEC14016: Moodle Quiz ### **Laboratory Time Table** Detail of the laboratory timetable will be available from unit website separately in Week 2. ### **Assessment Tasks** # 1 Traffic Engineering Porfolio ### **Assessment Type** Portfolio ### **Task Description** This portfolio contribute 50 marks out of 100 marks. It consist of three independent assessment task. This assessment focus on weeks 1 to 6 content. This assessment item relates to the unit learning outcomes 1, 2, 5 and 6. It develops students' ability to understand capacity analysis procedures for both roadways and intersections using current Australian Guidelines and Design Practices. Use of SIDRA software (intersection design software) is highly recommended when applicable. ### Quizzes (10 Marks): #### **Complete three Moodle quizzes** More detail avialable in Moodle ### Roadway Capacity Analysis Task (16 Marks): Road Authority in Victoria is currently considering to upgrade an existing suburban multilane road to a freeway in Melbourne due to severe traffic delays (based on the public complaints) during peak periods. As a traffic engineer working at Road Authority in Victoria, you were asked to collect data for the existing condition, analyse the existing condition and recommend whether converting the multi lane road to the freeway improves capacity and level of service. Over several months, you collected the following data: ### **Existing multilane road:** - Lane width of 3.6m (12ft), total lateral clearance 1.8m (6ft) and about 6.25 access points per km (10 points per mile) - Two lanes per direction, divided multilane road in rolling terrain - Observed base free flow speed of approximately 80km/hr (50mi/hr) - Observed directional flow of (3000 + last four digits of your student ID ÷ 10) with corresponding PHF=0.90 and 2% trucks. - All motorists seem to be commuters or regular facility users. ### Proposed freeway data: - Lane width of 3.6m (12ft), left side lateral clearance 0.9m (3ft) and about 2.5 ramps per km (4 ramps per mile) - Two lanes per direction, freeway in rolling terrain - Observed base free flow speed of approximately 110km/hr (70mi/hr) - Directional traffic flow is expected to increase by 25% including trucks but PHF is expected to remain the same. - All motorists are expected to be commuters or regular facility users. Consider the following types for analysis (ignore the costs of converting multilane road to freeway): - Multilane road- existing case (6 marks) - Freeway (6 marks) Also, compare and provide a detailed discussions on analysis outcomes. (4 marks). ### **Intersection Capacity Analysis Task (24 Marks)** A City Council received a number of complaints about excessive delays at one of their local street intersection during morning peak period at the City Centre. As a traffic engineer working for the City Council, you were tasked with providing the best engineering solution to remedy the problem (if there is a problem). You performed a site visit and the following observations were made: - The intersection connects two-lane two-way cross-roads at approximately 90 degree angle. - There are right-turning lanes on North-South road. But site condition is such that one right- turn lane could be added on East-West road too but there is no space for left-turning slip lanes or additional through lanes. Small roundabout could also be considered. - There were virtually no trucks during morning peak period. - Currently, the intersection is un-signalised and East-West road needs to GIVE WAY to North- South traffic. - Speed limit is 60km/hr at all approaches. - There is not much variation of traffic flow rate within morning peak hour. - Traffic volumes (veh/hr) during the peak period were observed as follows: - o From South: 200 (left turn), 500 (through) & 100 (right turn) - From East: 150 (left turn), 100 (through) & 400 (right turn) - From North: 100 (left turn), 500 (through) & 100 (right turn) - o From West: 150 (left turn), 100 (through) & 200 (right turn) - No annual traffic growth is expected for foreseeable future. - Other information can be assumed within Australian Standards and guides. Consider the following types of intersections for manual analysis and design: - Un-signalised intersection- existing case (3 marks) - Un-signalised intersection- modified (3 marks) - Roundabout (3 marks) - Signalised intersection (3 marks) Compare your manual analytical solutions with the outputs from SIDRA. Provide reason/s if there are any variations in the outputs. (9 marks) Also compare alternative intersection controls and recommend the best intersection type (3 marks). #### **Assessment Due Date** Week 7 Friday (3 May 2019) 5:00 pm AEST ### **Return Date to Students** After 10 working days ### Weighting 50% #### Minimum mark or grade 50% #### **Assessment Criteria** The marking matrix shall be based on the content consisting of the following principles. Each sequential step shall be allocated marks proportionately - 1. Accuracy of Input parameter for each computation step with appropriate unit. Marks will only be awarded for correct input - 2. Application of accurate methodology with appropriate referencing. Full mark will only be awarded for error free computational steps with appropriate explanation to be understood by an independent person. - 3. Accuracy of answer with appropriate unit. Zero mark will be awarded with error in either Input or methodology. - 4. If answers to any preceding steps are inaccurate. Partial mark be awarded for subsequent answers. Additional information should be obtained from the Moodle Unit web-page ### **Referencing Style** • Harvard (author-date) #### **Submission** Online ### **Learning Outcomes Assessed** - Analyse traffic flows and describe the effect of key traffic flow parameters and their inter-relationships - · Apply systematic approaches to conduct capacity analysis and level of-service of roadways and intersections - Demonstrate a professional level of communication and team work #### **Graduate Attributes** - Communication - Problem Solving - Critical Thinking - Information Literacy - Team Work - Information Technology Competence - Cross Cultural Competence - Ethical practice # 2 Pavement Design ### **Assessment Type** Portfolio ### **Task Description** This assessment item relates to the unit learning outcomes 3, 4, 5 and 6. It develops students' ability to understand Australian pavement design system, materials and tests and design of alternative pavement configurations (flexible pavements, rigid pavements and structural overlays) using current Australian Guidelines and Design Practices. Use of CIRCLY software (pavement design software) is highly recommended when required. ### • Quiz (5 Marks) Complete quizzes online. More details avialable in Moodle ### Laboratory Task (10) - You will complete the practical activities and the laboratory report as a team. - o On-campus students will complete the practical activities between Weeks 5 and 9 of term. - Each team should check their schedule timetable as shown in Moodle - o Distance students will complete the practical activities during the Residential School in Week 8. - All teams will upload a single team report due as per the Unit Profile. - The required practical activities are as follows - Preparation disturbed soil sample for testing - Soil Compaction and density test AS1289.5.2.2017 - Determination of the penetration resistance of a soil AS1289.6.3.2 - Determination of the California Bearing Ratio of a soil AS1289.6.1.1 - Lime demandof soil Q133 ### Design Task 1: Flexible pavement design (20 marks) Geometric design, earth moving and subgrade evaluation of a new two-lane two-way road has been recently completed and now it is time for design of pavement in rural Queensland. A new flexible pavement is to be designed and you are tasked to develop flexible pavement alternatives for further consideration. The following are the project specific information supplied by the client (Road Authority in Queensland): - Two way total AADT=4000+(the last four digits of your student ID)/10 - Pavement design period 30 years. - Project reliability 95%. - Lane width= 3.5m. - o Directional distribution 60/40 - Subgrade CBR value = 3 (if the last four digits of your student ID is < 3000), 5 (if the last four digits of your student ID is ≥ 3000 but < 6000) and 7 (if the last four digits of your student ID is ≥ 6000) - \circ Heavy vehicles = 8% (if the last four digits of your student ID is < 3000), 9% (if the last four digits of your student ID is ≥ 3000 but <6000) and 10% (if the last four digits of your student ID is ≥6000) - Annual heavy vehicle growth is 1% throughout the design period - Other required information can be assumed within Australian Standard (Austroads Guides) - Summarise and calculate required flexible pavement design input parameters (4 marks) - Design the following flexible pavement alternatives using mechanistic or graphical methods (as applicable, appropriate or preferred!). You need to draw final design drawings for all cases (not to scale is acceptable but indicate all required dimensions and units of measurements). You must discuss/interpret everything you calculate or present. - Alternative 1: Unbound granular pavement with thin bituminous surfacing (3 marks) - Alternative 2: Full depth asphalt (E=2500MPa) (3 marks) - Alternative 3: Asphalt (E=3500MPa) with granular base (E=550MPa) (5 marks) - Alternative 4: Asphalt (E=2200MPa), granular base (E=550MPa), cemented subbase (E=5000MPa) (5 marks) ### Design Task 2: Rigid Pavement design (10 Marks) For the same road location and information (described above in Design Task 1), Road Authority in Queensland also asked you to develop rigid pavement design alternatives. - Summarise and calculate required rigid pavement design input parameters (2 marks) - Design the following rigid pavement alternatives using analytical or graphical methods (as applicable or appropriate or preferred!). You need to draw final design drawings for all cases (not to scale is acceptable but indicate all required dimensions and units of measurements). You must discuss/interpret everything you calculate or present. - Alternative 1: PCP pavement without concrete shoulder (4 marks) - Alternative 2: CRCP pavement with concrete shoulder (4 marks) ### **Design Task 3: Design of Flexible Asphalt Overlay (5 Marks)** A homogeneous section of a cracked asphalt surfaced granular pavement is situated in Brisbane where the WMAPT is 32°C. As the existing asphalt is cracked, it is proposed to mill 25 mm from the existing 50 mm thick asphalt prior to asphalt overlay. The following characteristic values were calculated from deflectograph deflection testing undertaken at a pavement temperature of 25 °C: - Measured Characteristic Deflection at 25°C = 0.87 mm - Measured Characteristic Curvature at 25°C = 0.30 mm. Based on experience, the client (Road Authority in Queensland) advised that the designer considered that there was no need to apply a Seasonal Moisture Correction Factor to these measured deflections and curvatures. The design traffic loading (ESA) for this section is the same as described above (Design Task 1). Design asphalt overlay on asphalt surfaced granular pavement using design charts. You need to draw final design drawings (not to scale is acceptable but indicate all required dimensions and units of measurements). You must discuss/interpret everything you calculate (5 marks) #### **Assessment Due Date** Week 12 Monday (3 June 2019) 11:45 pm AEST ### **Return Date to Students** After 10 working days ### Weighting 50% #### Minimum mark or grade 50% ### **Assessment Criteria** The marking matrix shall be based on the content consisting of the following principles. Each sequential step shall be allocated marks proportionately - 1. Accuracy of Input parameter for each computation step with appropriate unit. Marks will only be awarded for correct input - 2. Application of accurate methodology with appropriate referencing. Full mark will only be awarded for error free computational steps with appropriate explanation to be understood by an independent person. - 3. Accuracy of answer with appropriate unit. Zero mark will be awarded with error in either Input or methodology. - 4. If answers to any preceding steps are inaccurate. Partial mark be awarded for subsequent answers. Additional information should be obtained from the Moodle Unit web-page ### **Referencing Style** • Harvard (author-date) #### **Submission** Online ### **Learning Outcomes Assessed** - Evaluate the pavement sublayer materials properties using appropriate Australian guidelines - Design structural road pavements using appropriate Australian guidelines - Demonstrate a professional level of communication and team work #### **Graduate Attributes** - Communication - Problem Solving - Critical Thinking - Information Literacy - Team Work - Information Technology Competence - Cross Cultural Competence - Ethical practice # **Academic Integrity Statement** As a CQUniversity student you are expected to act honestly in all aspects of your academic work. Any assessable work undertaken or submitted for review or assessment must be your own work. Assessable work is any type of work you do to meet the assessment requirements in the unit, including draft work submitted for review and feedback and final work to be assessed. When you use the ideas, words or data of others in your assessment, you must thoroughly and clearly acknowledge the source of this information by using the correct referencing style for your unit. Using others' work without proper acknowledgement may be considered a form of intellectual dishonesty. Participating honestly, respectfully, responsibly, and fairly in your university study ensures the CQUniversity qualification you earn will be valued as a true indication of your individual academic achievement and will continue to receive the respect and recognition it deserves. As a student, you are responsible for reading and following CQUniversity's policies, including the **Student Academic Integrity Policy and Procedure**. This policy sets out CQUniversity's expectations of you to act with integrity, examples of academic integrity breaches to avoid, the processes used to address alleged breaches of academic integrity, and potential penalties. ### What is a breach of academic integrity? A breach of academic integrity includes but is not limited to plagiarism, self-plagiarism, collusion, cheating, contract cheating, and academic misconduct. The Student Academic Integrity Policy and Procedure defines what these terms mean and gives examples. ### Why is academic integrity important? A breach of academic integrity may result in one or more penalties, including suspension or even expulsion from the University. It can also have negative implications for student visas and future enrolment at CQUniversity or elsewhere. Students who engage in contract cheating also risk being blackmailed by contract cheating services. ### Where can I get assistance? For academic advice and guidance, the <u>Academic Learning Centre (ALC)</u> can support you in becoming confident in completing assessments with integrity and of high standard. ### What can you do to act with integrity? #### **Be Honest** If your assessment task is done by someone else, it would be dishonest of you to claim it as your own #### Seek Help If you are not sure about how to cite or reference in essays, reports etc, then seek help from your lecturer, the library or the Academic Learning Centre (ALC) ### **Produce Original Work** Originality comes from your ability to read widely, think critically, and apply your gained knowledge to address a question or problem