CQUniversity Unit Profile
ENEM12006 Fluid Mechanics
Fluid Mechanics
All details in this unit profile for ENEM12006 have been officially approved by CQUniversity and represent a learning partnership between the University and you (our student).
The information will not be changed unless absolutely necessary and any change will be clearly indicated by an approved correction included in the profile.
General Information


This unit introduces the fundamental properties of fluids, analysis of pipe flow, buoyancy, and stability of floating objects. It presents methods of analysing fluid systems using the concept of a control volume combined with the conservation of mass and momentum equations. You analyse incompressible flows in pipe systems and use similitude and modelling principles and techniques to solve problems in fluid mechanics. You will prepare technical and laboratory reports using appropriate 'mechanical engineering language', and document the process of modelling and analysis. You are required to act professionally in presenting information, communicating, working, and learning, both individually and in teams. In this unit, you must complete compulsory practical activities. Refer to the Engineering Undergraduate Course Moodle site for proposed dates.


Career Level: Undergraduate
Unit Level: Level 2
Credit Points: 6
Student Contribution Band: 8
Fraction of Full-Time Student Load: 0.125

Pre-requisites or Co-requisites

Prerequisites: MATH11219 Engineering Mathematics AND ENEG11006 Engineering Statics.

Important note: Students enrolled in a subsequent unit who failed their pre-requisite unit, should drop the subsequent unit before the census date or within 10 working days of Fail grade notification. Students who do not drop the unit in this timeframe cannot later drop the unit without academic and financial liability. See details in the Assessment Policy and Procedure (Higher Education Coursework).

Offerings For Term 2 - 2021

Mixed Mode

Attendance Requirements

All on-campus students are expected to attend scheduled classes – in some units, these classes are identified as a mandatory (pass/fail) component and attendance is compulsory. International students, on a student visa, must maintain a full time study load and meet both attendance and academic progress requirements in each study period (satisfactory attendance for International students is defined as maintaining at least an 80% attendance record).

Residential Schools

This unit has a Compulsory Residential School for distance mode students and the details are:
Click here to see your Residential School Timetable.

Class and Assessment Overview

Recommended Student Time Commitment

Each 6-credit Undergraduate unit at CQUniversity requires an overall time commitment of an average of 12.5 hours of study per week, making a total of 150 hours for the unit.

Class Timetable

Bundaberg, Cairns, Emerald, Gladstone, Mackay, Rockhampton, Townsville
Adelaide, Brisbane, Melbourne, Perth, Sydney

Assessment Overview

1. Practical and Written Assessment
Weighting: 20%
2. Written Assessment
Weighting: 20%
3. Written Assessment
Weighting: 20%
4. Take Home Exam
Weighting: 40%

Assessment Grading

This is a graded unit: your overall grade will be calculated from the marks or grades for each assessment task, based on the relative weightings shown in the table above. You must obtain an overall mark for the unit of at least 50%, or an overall grade of ‘pass’ in order to pass the unit. If any ‘pass/fail’ tasks are shown in the table above they must also be completed successfully (‘pass’ grade). You must also meet any minimum mark requirements specified for a particular assessment task, as detailed in the ‘assessment task’ section (note that in some instances, the minimum mark for a task may be greater than 50%). Consult the University’s Grades and Results Policy for more details of interim results and final grades.

Previous Student Feedback

Feedback, Recommendations and Responses

Every unit is reviewed for enhancement each year. At the most recent review, the following staff and student feedback items were identified and recommendations were made.

Feedback from Have your say


The lecture materials of this unit are informative and concise.


The practice will continue in future offerings.

Feedback from Have your say


The laboratory experiments need to have better videos.


Students informed that the overall quality of the laboratory videos should be improved if the unit is to be taught distance again next year. We will offer a face-to-face residential school for this unit in the next year.

Feedback from Have your say


Students enjoyed the subject materials and the overall structure of the unit.


Students reported that the structure of each week and the contents of the topic were clearly explained and laid out. The practice will continue in the future offering.

Feedback from Have your say


Student satisfaction for 'Assessment Tasks' has dropped a bit in comparison with the previous year.


The assessment tasks will be reviewed in the future offering.

Unit Learning Outcomes
On successful completion of this unit, you will be able to:
  1. Apply the fundamentals of fluid mechanics to investigate pressure, buoyancy and hydrostatic forces
  2. Analyse fluid motion by applying the conservation of mass and momentum in real-world engineering contexts
  3. Identify the fluid flow regimes to apply Bernoulli Equation in pipe flows
  4. Create solutions to fluid systems using similitude and modelling techniques
  5. Measure flow regimes, rates and other basic fluid flow characteristics and compare with analytical data
  6. Work autonomously and in teams to prepare reports using appropriate engineering language.

The Learning Outcomes for this unit are linked with the Engineers Australia Stage 1 Competency Standards for Professional Engineers in the areas of 1. Knowledge and Skill Base, 2. Engineering Application Ability and 3. Professional and Personal Attributes at the following levels:

2.3 Application of systematic engineering synthesis and design processes. (LO: 1N 5N 6N )

1.4 Discernment of knowledge development and research directions within the engineering discipline. (LO: 1I 2I 3I 4I 5I 6I )
1.5 Knowledge of engineering design practice and contextual factors impacting the engineering discipline. (LO: 1N 4N 6I )
1.6 Understanding of the scope, principles, norms, accountabilities and bounds of sustainable engineering practice in the specific discipline. (LO: 1I 2I 3I 4I 6I )
2.2 Fluent application of engineering techniques, tools and resources. (LO: 1N 2N 3N 4I 5N 6I )
3.2 Effective oral and written communication in professional and lay domains. (LO: 1I 2I 5N 6I )
3.3 Creative, innovative and pro-active demeanour. (LO: 2N 4I 5I 6I )
3.4 Professional use and management of information. (LO: 1I 2I 3I 4I 5I 6I )
3.5 Orderly management of self, and professional conduct. (LO: 4I 6I )

1.1 Comprehensive, theory-based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline. (LO: 1N 3I 4A 5A 6I )
1.2 Conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences which underpin the engineering discipline. (LO: 1I 2I 3I 4A 5A 6I )
1.3 In-depth understanding of specialist bodies of knowledge within the engineering discipline. (LO: 1I 2I 3I 4I 5I 6A )
2.1 Application of established engineering methods to complex engineering problem solving. (LO: 1I 2I 3I 4A 5A 6I )
3.1 Ethical conduct and professional accountability. (LO: 6A )
3.6 Effective team membership and team leadership. (LO: 6A )

Note: LO refers to the Learning Outcome number(s) which link to the competency and the levels: N – Introductory, I – Intermediate and A - Advanced.

Refer to the Engineering Undergraduate Course Moodle site for further information on the Engineers Australia's Stage 1 Competency Standard for Professional Engineers and course level mapping information

Alignment of Learning Outcomes, Assessment and Graduate Attributes
N/A Level
Introductory Level
Intermediate Level
Graduate Level
Professional Level
Advanced Level

Alignment of Assessment Tasks to Learning Outcomes

Assessment Tasks Learning Outcomes
1 2 3 4 5 6
1 - Practical and Written Assessment - 20%
2 - Written Assessment - 20%
3 - Written Assessment - 20%
4 - Take Home Exam - 40%

Alignment of Graduate Attributes to Learning Outcomes

Graduate Attributes Learning Outcomes
1 2 3 4 5 6
1 - Communication
2 - Problem Solving
3 - Critical Thinking
4 - Information Literacy
5 - Team Work
6 - Information Technology Competence
7 - Cross Cultural Competence
8 - Ethical practice
9 - Social Innovation

Alignment of Assessment Tasks to Graduate Attributes

Assessment Tasks Graduate Attributes
1 2 3 4 5 6 7 8 9
1 - Practical and Written Assessment - 20%
2 - Written Assessment - 20%
3 - Written Assessment - 20%
4 - Take Home Exam - 40%
Textbooks and Resources



Munson's Fluid Mechanics 8th Edition (2017) 8 (2017)

Authors: P.M.; Gerhart, A. L.; Hochstein, J.I.
John Wiley & Sons
Hoboken Hoboken , NJ , USA
ISBN: 9781119248989
Binding: Hardcover

Elementary Fluid Mechanics 7th Edition (1996) 7 (1996)

Authors: Street, R.L., Watters, G.Z. and Vennard, J.K.
John Wiley & Sons
New York New York , NY , USA
ISBN: 9780471013105
Binding: Hardcover

Additional Textbook Information

The prescribed text is available in both paper and eBook versions can be purchased at the CQUni Bookshop here: http://bookshop.cqu.edu.au (search on the Unit code). The supplementary text is available in paper format only.

IT Resources

You will need access to the following IT resources:
  • CQUniversity Student Email
  • Internet
  • Unit Website (Moodle)
Academic Integrity Statement

As a CQUniversity student you are expected to act honestly in all aspects of your academic work.

Any assessable work undertaken or submitted for review or assessment must be your own work. Assessable work is any type of work you do to meet the assessment requirements in the unit, including draft work submitted for review and feedback and final work to be assessed.

When you use the ideas, words or data of others in your assessment, you must thoroughly and clearly acknowledge the source of this information by using the correct referencing style for your unit. Using others’ work without proper acknowledgement may be considered a form of intellectual dishonesty.

Participating honestly, respectfully, responsibly, and fairly in your university study ensures the CQUniversity qualification you earn will be valued as a true indication of your individual academic achievement and will continue to receive the respect and recognition it deserves.

As a student, you are responsible for reading and following CQUniversity’s policies, including the Student Academic Integrity Policy and Procedure. This policy sets out CQUniversity’s expectations of you to act with integrity, examples of academic integrity breaches to avoid, the processes used to address alleged breaches of academic integrity, and potential penalties.

What is a breach of academic integrity?

A breach of academic integrity includes but is not limited to plagiarism, self-plagiarism, collusion, cheating, contract cheating, and academic misconduct. The Student Academic Integrity Policy and Procedure defines what these terms mean and gives examples.

Why is academic integrity important?

A breach of academic integrity may result in one or more penalties, including suspension or even expulsion from the University. It can also have negative implications for student visas and future enrolment at CQUniversity or elsewhere. Students who engage in contract cheating also risk being blackmailed by contract cheating services.

What can you do to act with integrity?

Where can I get assistance?

For academic advice and guidance, the Academic Learning Centre (ALC) can support you in becoming confident in completing assessments with integrity and of high standard.