ENEM13015 Design of Machine Elements Term 2-2019

Profile information current as at 29/04/2024 04:04 am
All details in this unit profile for ENEM13015 have been officially approved by CQUniversity and represent a learning partnership between the University and you (our student). The information will not be changed unless absolutely necessary and any change will be clearly indicated by an approved correction included in the profile.

General Information

Overview

Design of Machine Elements is aimed at integrating and applying prior knowledge in fundamental design, materials sciences, mechanics of materials, statics and dynamics coupled with design strategies and knowledge of machine elements to design various machine components. These skills and knowledge will help you to design, analyse, synthesize and deliver robust engineering solutions. You will acquire strong analytical knowledge of machine elements, their design and load carriage and power transmission mechanics.

Details

Career Level: Undergraduate
Unit Level: Level 3
Credit Points: 6
Student Contribution Band: 8
Fraction of Full-Time Student Load: 0.125

Pre-requisites or Co-requisites

Prerequisites: MATH11219 Engineering Mathematics AND (ENEM12009 Structural Mechanics OR ENEM14012 Solid Mechanics and Computational Analysis)
Important note: Students enrolled in a subsequent unit who failed their pre-requisite unit, should drop the subsequent unit before the census date or within 10 working days of Fail grade notification. Students who do not drop the unit in this timeframe cannot later drop the unit without academic and financial liability. See details in the Assessment Policy and Procedure (Higher Education Coursework).
Offerings For Term 2-2019

- Bundaberg
- Cairns
- Gladstone
- Mackay
- Online
- Rockhampton

Attendance Requirements

All on-campus students are expected to attend scheduled classes - in some units, these classes are identified as a mandatory (pass/fail) component and attendance is compulsory. International students, on a student visa, must maintain a full time study load and meet both attendance and academic progress requirements in each study period (satisfactory attendance for International students is defined as maintaining at least an 80% attendance record).

Website

This unit has a website, within the Moodle system, which is available two weeks before the start of term. It is important that you visit your Moodle site throughout the term. Please visit Moodle for more information.

Recommended Student Time Commitment

Each 6-credit Undergraduate unit at CQUniversity requires an overall time commitment of an average of 12.5 hours of study per week, making a total of 150 hours for the unit.

Class Timetable

Regional Campuses

Bundaberg, Cairns, Emerald, Gladstone, Mackay, Rockhampton, Townsville

Metropolitan Campuses

Adelaide, Brisbane, Melbourne, Perth, Sydney

Assessment Overview

1. Written Assessment

Weighting: 20\%
2. Project (applied)

Weighting: 50\%
3. Project (applied)

Weighting: 30\%

Assessment Grading

This is a graded unit: your overall grade will be calculated from the marks or grades for each assessment task, based on the relative weightings shown in the table above. You must obtain an overall mark for the unit of at least 50%, or an overall grade of 'pass' in order to pass the unit. If any 'pass/fail' tasks are shown in the table above they must also be completed successfully ('pass' grade). You must also meet any minimum mark requirements specified for a particular assessment task, as detailed in the 'assessment task' section (note that in some instances, the minimum mark for a task may be greater than 50\%). Consult the University's Grades and Results Policy for more details of interim results and final grades.

CQUniversity Policies

All University policies are available on the CQUniversity Policy site.
You may wish to view these policies:

- Grades and Results Policy
- Assessment Policy and Procedure (Higher Education Coursework)
- Review of Grade Procedure
- Student Academic Integrity Policy and Procedure
- Monitoring Academic Progress (MAP) Policy and Procedure - Domestic Students
- Monitoring Academic Progress (MAP) Policy and Procedure - International Students
- Student Refund and Credit Balance Policy and Procedure
- Student Feedback - Compliments and Complaints Policy and Procedure
- Information and Communications Technology Acceptable Use Policy and Procedure

This list is not an exhaustive list of all University policies. The full list of University policies are available on the CQUniversity Policy site.

Feedback, Recommendations and Responses

Every unit is reviewed for enhancement each year. At the most recent review, the following staff and student feedback items were identified and recommendations were made.

Feedback from Have Your Say

Feedback

Some students lack knowledge of fundamental Engineering Drawing and modelling packages such as AutoCAD, Inventor and Solidworks, making it challenging to complete some assessment components.

Recommendation

Student who are not confident with AutoCAD or Solidworks should be prepared to complete additional independent study. More assistance will be provided in the form of targeted tutorials in this respect.

Feedback from Have Your Say

Feedback

Vast unit content.

Recommendation

This issue was addressed to some extent this year by moving two topics to other units. It, however, became imperative to still discuss those topics to keep the transitioning students abreast of the related knowledge. This issue will be overcome in the next offering.

Unit Learning Outcomes

On successful completion of this unit, you will be able to:

1. Develop detailed design of machine components to Australian and International Standards
2. Apply the formal procedures of detailed machine design, including requirements, solutions, modelling and evaluation to solve problems
3. Analyse and design a range of machine elements, explain the physical basis of their design, usage and operational limitations
4. Interpet various design codes and standards
5. Work effectively in teams by: identifying individual roles and responsibility, interacting positively with colleagues, and communicating effectively at group meetings
6. Communicate as professionals through the production of drawings (computer aided) and Bill of Materials, and through written technical reports.

Learning outcomes are linked to Engineers Australia Stage 1 Competencies and also discipline capabilities.

Alignment of Learning Outcomes, Assessment and Graduate Attributes

- N/A \begin{tabular}{l}
Level

 Introductory

Level

 - Intermediate

Level

 Graduate

Level

 Professional

Level
\end{tabular} Advanced

Alignment of Assessment Tasks to Learning Outcomes

Assessment Tasks	Learning Outcomes					
	1	2	3	4	5	6
1-Written Assessment-20\%		\bullet	\bullet			
2-Project (applied) - 50\%	\bullet	-		\bullet	\bullet	\bullet

Assessment Tasks

Learning Outcomes

	1	2	3	4	5	6
3 - Project (applied) -30%	\bullet		\bullet	\bullet		\bullet

Alignment of Graduate Attributes to Learning Outcomes

Graduate Attributes	Learning Outcomes					
	1	2	3	4	5	6
1 - Communication			\bullet		-	-
2 - Problem Solving	\bullet	-	\bullet			
3-Critical Thinking	\bullet	\bullet	\bullet	\bullet		
4 - Information Literacy	\bullet	-		-		
5 - Team Work					\bullet	
6 - Information Technology Competence					\bullet	\bullet
7 - Cross Cultural Competence					\bullet	
8 - Ethical practice	-				\bullet	\bullet
9 - Social Innovation						

Alignment of Assessment Tasks to Graduate Attributes

Textbooks and Resources

Textbooks

ENEM13015

Prescribed

Shigley's Mechanical Engineering Design
Edition: SI 10th (2014)
Authors: Richard G Budynas and Keith J Nisbett
McGraw Hill
ISBN: 9789813151000
Binding: Paperback

Additional Textbook Information

Paper copies are available from the CQUni Bookshop here: http://bookshop.cqu.edu.au (search on the Unit code)
View textbooks at the CQUniversity Bookshop

IT Resources

You will need access to the following IT resources:

- CQUniversity Student Email
- Internet
- Unit Website (Moodle)

Referencing Style

All submissions for this unit must use the referencing styles below:

- Harvard (author-date)
- Turabian

For further information, see the Assessment Tasks.

Teaching Contacts

Prasad Gudimetla Unit Coordinator
p.gudimetla@cqu.edu.au

Schedule

Week 1-15 Jul 2019
Module/Topic Chapter Events and Submissions/Topic

1. Introduction to design of machine elements
2. Design Standards and Design

Codes
3. Design for Strength \& Stiffness -

Review of static design methods

Lecture Notes
Chapters 1-4, Shigley

1. Discussion on Assignments, Major and minor projects.
2. Assignment 1 (Individual): Design Analysis Problems - 20\% total weighting
3. Assignment 2 (Group): Group Design Project - 50\% total weighting 4. Assignment 3 (Individual): Individual Design Project - 30\% total weighting 5. Form Groups

Assignment 2: Group Design
Project - Finalize the selection of group design project and submit a 1 page proposal via the submission link on unit Moodle site. Refer to assignment documentation for further details.

Week 2-22 Jul 2019

Module/Topic

1. Failure Modes and Prevention in Machine Elements 2. Failure Theories and Design for Static Loading

Chapter

Lecture Notes
Chapter 5, Shigley

Events and Submissions/Topic

Solved example problems, Design case study

Week 3-29 Jul 2019

Module/Topic

Chapter

Events and Submissions/Topic

1. Design for Variable Loading
2. Fatigue Life Methods - Stress-life \&

Strain-life Methods
3. Linear Elastic Fracture Mechanics
(LEFM) Method

Lecture Notes
Chapters 6, Shigley

Chapter

Lecture Notes
Chapter 7, Shigley

Week 4-05 Aug 2019

Events and Submissions/Topic

Solved example problems, Design case study
speeds, limits and fits
2. Design of shaft components - keys and keyways

Module/Topic

1. Design of Shafts - materials, shaft layout, shaft design for stress deflection considerations, critical

Week 5-12 Aug 2019
Module/Topic
Chapter
Events and Submissions/Topic

1. Design \& Selection of Roller Bearings - Variable loading, Selection of ball, cylinder and tapered roller bearings
2. Design assessment, lubrication, mounting and enclosure design

Lecture Notes
Chapter 11, Shigley

Solved example problems, Design case study

Vacation Week - 19 Aug 2019

Module/Topic Chapter

Week 6-26 Aug 2019

Module/Topic

1. Gears - types of gears, Spur gear terminology, Lewis Bending equation 2. AGMA Stress equations, AGMA Strength equations, dynamic, overload, size, surface condition factors

Chapter

Lecture Notes
Chapter 13, Shigley

Events and Submissions/Topic
Solved example problems, Design case study

Problem Solving Due: Week 6 Friday (30 Aug 2019) 11:45 pm AEST

Week 7-02 Sep 2019

Module/Topic
Chapter
Events and Submissions/Topic

1. Design of Spur \& Helical Gears Load distribution, hardness ratio, stress cycle life, temperature, reliability factors
2. Design of gear trains - calculation of reduction ratios, power transmission

Lecture Notes
Chapter 14, Shigley

Solved example problems, Design case study

Week 8-09 Sep 2019

Module/Topic

1. Design of Bevel Gears
2. Design of Worm Gears

Chapter
Lecture Notes
Chapter 15, Shigley

Events and Submissions/Topic
Solved example problems, Design case study

Events and Submissions/Topic

Solved example problems, Design case study
2. Design of Non-permanent Joints -

Threads, Screws and Fasteners

Chapter

Lecture Notes
Chapter 8, Shigley

Events and Submissions/Topic
Solved example problems
Group Project Due: Week 10 Friday (27 Sept 2019) 11:45 pm AEST

Week 11-30 Sep 2019
Module/Topic

1. Design of Mechanical Springs

Chapter
Lecture Notes
Chapter 10, Sigley

Events and Submissions/Topic
Solved example problems, Design case study

Week 12-07 Oct 2019

Module/Topic

1. Tribology, Wear \& Lubrication of Machine Elements
2. Design \& Selection of Journal Bearings

Chapter

Lecture Notes
Chapter 12, Shigley

Events and Submissions/Topic
Solved example problems, Design case study

Individual Project Due: Week 12 Friday (11 Oct 2019) 11:45 pm AEST

Review/Exam Week - 14 Oct 2019

Chapter

Chapter

Events and Submissions/Topic

Exam Week - 21 Oct 2019
Module/Topic

Events and Submissions/Topic

Assessment Tasks

1 Problem Solving

Assessment Type

Written Assessment

Task Description

This assignment will consist of 5 numerical problems which you will solve and submit during the term. Each problem will be related to a portion of the syllabus covered in the first 6 weeks.

Assessment Due Date

Week 6 Friday (30 Aug 2019) 11:45 pm AEST

Return Date to Students

Week 8 Monday (9 Sept 2019)

Weighting

20\%
Minimum mark or grade
50\%

Assessment Criteria

The main criteria for assessment are:

1. Development of accurate free body diagrams (FBDs) for the problems
2. Application of relevant theory and design equations to calculate required unknowns
3. Comment on the final results obtained

Refer to the assessment handout for more detailed information.

Referencing Style

- Harvard (author-date)
- Turabian

Submission

Online

Learning Outcomes Assessed

- Apply the formal procedures of detailed machine design, including requirements, solutions, modelling and evaluation to solve problems
- Analyse and design a range of machine elements, explain the physical basis of their design, usage and operational limitations

Graduate Attributes

- Problem Solving
- Critical Thinking

2 Group Project

Assessment Type

Project (applied)

Task Description

The assessment will involve the design, drawing, CAD modelling and 3D printing of a gearbox for a particular application that you will solve undertake as a part of a 4-member team. You will assess your designs for 3D printability and rescale your original drawings for 3D printing. You will follow the instructions provided on the unit Moodle site and submit a comprehensive report and engineering drawings. There will be one report per group.

Assessment Due Date

Week 10 Friday (27 Sept 2019) 11:45 pm AEST
Return Date to Students
Week 12 Monday (7 Oct 2019)

Weighting

50\%
Minimum mark or grade
50\%

Assessment Criteria

The following are the main assessment criteria for the gearbox assignment:

1. Succinct development of the design project case
2. Present and discuss appropriate assumptions, justifications and reflections on the scope and limitations of the design
3. Detailed design calculations for all components
4. Detailed, accurate and scaled engineering drawings with BOMs and all relevant specifications according to AS standards, for 3D printability
5. Comprehensive documentation of the design procedure with a list of references.

Referencing Style

- Harvard (author-date)
- Turabian

Submission

Online Group

Submission Instructions

Submit as a single PDF document.

Learning Outcomes Assessed

- Develop detailed design of machine components to Australian and International Standards
- Apply the formal procedures of detailed machine design, including requirements, solutions, modelling and evaluation to solve problems
- Interpet various design codes and standards
- Work effectively in teams by: identifying individual roles and responsibility, interacting positively with colleagues, and communicating effectively at group meetings
- Communicate as professionals through the production of drawings (computer aided) and Bill of Materials, and through written technical reports.

Graduate Attributes

- Communication
- Problem Solving
- Critical Thinking
- Information Literacy
- Team Work
- Information Technology Competence
- Cross Cultural Competence
- Ethical practice

3 Individual Project

Assessment Type

Project (applied)

Task Description

In this assignment, you will design an individual machine element as described in the handout.

Assessment Due Date

Week 12 Friday (11 Oct 2019) 11:45 pm AEST

Return Date to Students

Exam Week Monday (21 Oct 2019)

Weighting

30\%

Minimum mark or grade

50\%

Assessment Criteria

The main assessment criteria will include:

1. Adoption of prescribed design approaches to develop correct FBDs
2. Retrieve correct material data and other design coefficients from tables and charts
3. Apply correct theory and equations to solve for the unknowns
4. Make correct interpretations and comment on the final answers.
5. Develop full scale engineering drawing of the result according to AS1100.101 and 201

Refer to the assessment handout for more detailed information.

Referencing Style

- Harvard (author-date)
- Turabian

Submission

Online

Submission Instructions

Submit as a PDF document

Learning Outcomes Assessed

- Develop detailed design of machine components to Australian and International Standards
- Analyse and design a range of machine elements, explain the physical basis of their design, usage and operational limitations
- Interpet various design codes and standards
- Communicate as professionals through the production of drawings (computer aided) and Bill of Materials, and through written technical reports.

Graduate Attributes

- Problem Solving
- Critical Thinking
- Information Literacy
- Information Technology Competence

As a CQUniversity student you are expected to act honestly in all aspects of your academic work.

Any assessable work undertaken or submitted for review or assessment must be your own work. Assessable work is any type of work you do to meet the assessment requirements in the unit, including draft work submitted for review and feedback and final work to be assessed.

When you use the ideas, words or data of others in your assessment, you must thoroughly and clearly acknowledge the source of this information by using the correct referencing style for your unit. Using others' work without proper acknowledgement may be considered a form of intellectual dishonesty.

Participating honestly, respectfully, responsibly, and fairly in your university study ensures the CQUniversity qualification you earn will be valued as a true indication of your individual academic achievement and will continue to receive the respect and recognition it deserves.

As a student, you are responsible for reading and following CQUniversity's policies, including the Student Academic Integrity Policy and Procedure. This policy sets out CQUniversity's expectations of you to act with integrity, examples of academic integrity breaches to avoid, the processes used to address alleged breaches of academic integrity, and potential penalties.

What is a breach of academic integrity?

A breach of academic integrity includes but is not limited to plagiarism, self-plagiarism, collusion, cheating, contract cheating, and academic misconduct. The Student Academic Integrity Policy and Procedure defines what these terms mean and gives examples.

Why is academic integrity important?

A breach of academic integrity may result in one or more penalties, including suspension or even expulsion from the University. It can also have negative implications for student visas and future enrolment at CQUniversity or elsewhere. Students who engage in contract cheating also risk being blackmailed by contract cheating services.

Where can I get assistance?

For academic advice and guidance, the Academic Learning Centre (ALC) can support you in becoming confident in completing assessments with integrity and of high standard.

What can you do to act with integrity?

Be Honest
If your assessment task is done by someone else, it would be dishonest of you to claim it as your own

Seek Help
If you are not sure about how to cite or reference in essays, reports etc, then seek help from your lecturer, the library or the Academic Learning Centre (ALC)

Produce Original Work
Originality comes from your ability to read widely, think critically, and apply your gained knowledge to address a question or problem

