

#### Profile information current as at 09/05/2024 05:28 am

All details in this unit profile for ENEM14011 have been officially approved by CQUniversity and represent a learning partnership between the University and you (our student). The information will not be changed unless absolutely necessary and any change will be clearly indicated by an approved correction included in the profile.

## Corrections

### Unit Profile Correction added on 06-05-20

Due to COVID-19, final exams for 2020 Term 1 have been cancelled. The final exam in this unit will be replaced by an online open-book non-invigilated summative assessment of the same weighting to be undertaken in the same duration but with an extra 30 minutes allocated for scanning and uploading of answers into Moodle. A Zoom session will be in operation at the same time for students to use for enquiries during the assessment. This has been approved by the Undergraduate Engineering Committee. Further details will be available in class and in Moodle. The learning outcomes assessed are unchanged.

# **General Information**

# Overview

This unit introduces you to key concepts and principles required to analyse problems involving heat exchange and energy conversion. You will analyse and design heat exchangers and analyse the performance of compressors, internal combustion engines, gas turbines and jet propulsion. You will analyse combustion processes and estimate pollutant emissions, and analyse and design nozzles to promote safe and efficient combustion. You will prepare professional documents that demonstrate critical evaluation of results. You will be required to show your ability to work productively to solve problems, and document and communicate your work clearly in a professional manner. On-campus students will be required to attend laboratory sessions to promote development of unit learning outcomes. Mixed Mode (online) students will be required to attend a residential school to attend laboratory sessions and an in-class test to promote development of unit learning outcomes.

# Details

Career Level: Undergraduate Unit Level: Level 4 Credit Points: 6 Student Contribution Band: 8 Fraction of Full-Time Student Load: 0.125

# Pre-requisites or Co-requisites

Prereq: ENEM13014 Thermodynamics or ENEM12003 Thermodynamics

Important note: Students enrolled in a subsequent unit who failed their pre-requisite unit, should drop the subsequent unit before the census date or within 10 working days of Fail grade notification. Students who do not drop the unit in this timeframe cannot later drop the unit without academic and financial liability. See details in the <u>Assessment Policy and</u> <u>Procedure (Higher Education Coursework)</u>.

# Offerings For Term 1 - 2020

- Bundaberg
- Cairns
- Gladstone
- Mackay
- Mixed Mode
- Rockhampton

# Attendance Requirements

All on-campus students are expected to attend scheduled classes – in some units, these classes are identified as a mandatory (pass/fail) component and attendance is compulsory. International students, on a student visa, must maintain a full time study load and meet both attendance and academic progress requirements in each study period (satisfactory attendance for International students is defined as maintaining at least an 80% attendance record).

# **Residential Schools**

This unit has a Compulsory Residential School for distance mode students and the details are: Click here to see your <u>Residential School Timetable</u>.

# Website

This unit has a website, within the Moodle system, which is available two weeks before the start of term. It is important that you visit your Moodle site throughout the term. Please visit Moodle for more information.

# **Class and Assessment Overview**

### **Recommended Student Time Commitment**

Each 6-credit Undergraduate unit at CQUniversity requires an overall time commitment of an average of 12.5 hours of study per week, making a total of 150 hours for the unit.

# **Class Timetable**

**Regional Campuses** Bundaberg, Cairns, Emerald, Gladstone, Mackay, Rockhampton, Townsville

Metropolitan Campuses Adelaide, Brisbane, Melbourne, Perth, Sydney

### Assessment Overview

In-class Test(s)
Weighting: 15%
Laboratory/Practical
Weighting: 15%
Online Test
Weighting: 15%
Examination
Weighting: 55%

### Assessment Grading

This is a graded unit: your overall grade will be calculated from the marks or grades for each assessment task, based on the relative weightings shown in the table above. You must obtain an overall mark for the unit of at least 50%, or an overall grade of 'pass' in order to pass the unit. If any 'pass/fail' tasks are shown in the table above they must also be completed successfully ('pass' grade). You must also meet any minimum mark requirements specified for a particular assessment task, as detailed in the 'assessment task' section (note that in some instances, the minimum mark for a task may be greater than 50%). Consult the <u>University's Grades and Results Policy</u> for more details of interim results and final grades.

# **CQUniversity Policies**

### All University policies are available on the <u>CQUniversity Policy site</u>.

You may wish to view these policies:

- Grades and Results Policy
- Assessment Policy and Procedure (Higher Education Coursework)
- Review of Grade Procedure
- Student Academic Integrity Policy and Procedure
- Monitoring Academic Progress (MAP) Policy and Procedure Domestic Students
- Monitoring Academic Progress (MAP) Policy and Procedure International Students
- Student Refund and Credit Balance Policy and Procedure
- Student Feedback Compliments and Complaints Policy and Procedure
- Information and Communications Technology Acceptable Use Policy and Procedure

This list is not an exhaustive list of all University policies. The full list of University policies are available on the <u>CQUniversity Policy site</u>.

# Previous Student Feedback

### Feedback, Recommendations and Responses

Every unit is reviewed for enhancement each year. At the most recent review, the following staff and student feedback items were identified and recommendations were made.

### Feedback from Unit Coordinator reflections

### Feedback

Student performance in the tests was higher than expected but probably due to too much test guidance given as to the questions.

### Recommendation

A wider range of questions will be used in 2020.

### Feedback from Student feedback

### Feedback

Feedback on labs was delayed.

### Recommendation

UC was hampered by illness and the loss of a partner. UC will try to develop an alternative marking process that is less reliant on one person completing the marking.

### Feedback from Student feedback

### Feedback

Tutorial answers poorly presented (poor handwriting).

#### Recommendation

Model answers will be rewritten for 2020.

### Feedback from Student feedback and UC reflections

#### Feedback

Distance students have potential access to more resources for second test since they do it at home and not on a campus.

#### Recommendation

UC will consider alternative means of doing second hand-written test - it may become an online quiz instead of a handwritten test.

# Unit Learning Outcomes

#### On successful completion of this unit, you will be able to:

- 1. Analyse and explain the principles of heat transfer and conversion between heat energy and mechanical power
- 2. Analyse and evaluate the performance of heat exchangers and internal combustion engines
- 3. Analyse and explain combustion calculations and processes
- 4. Analyse and evaluate the performance of gas turbines with respect to jet propulsion
- 5. Analyse and evaluate the performance of nozzles with respect to jet propulsion
- 6. Analyse and evaluate the performance of compressors.

This unit in the Mechanical Engineering course helps students meet the Engineers Australia's stage one competencies.

# Alignment of Learning Outcomes, Assessment and Graduate Attributes



# Alignment of Assessment Tasks to Learning Outcomes

| Assessment Tasks               | Lea | Learning Outcomes |   |   |   |   |   |
|--------------------------------|-----|-------------------|---|---|---|---|---|
|                                | 1   |                   | 2 | 3 | 4 | 5 | 6 |
| 1 - In-class Test(s) - 15%     | •   |                   | • |   |   |   |   |
| 2 - Laboratory/Practical - 15% | •   |                   | • |   |   |   |   |
| 3 - Online Test - 15%          |     |                   |   | • | • |   |   |
| 4 - Examination - 55%          |     |                   |   | • | • | • | • |

# Alignment of Graduate Attributes to Learning Outcomes

| Graduate Attributes                                 | Learning Outcomes |   |   |   |   |   |
|-----------------------------------------------------|-------------------|---|---|---|---|---|
|                                                     | 1                 | 2 | 3 | 4 | 5 | 6 |
| 1 - Communication                                   | •                 | • | • | • | • | • |
| 2 - Problem Solving                                 | •                 | • | • | • | • | • |
| 3 - Critical Thinking                               | •                 | • | • | • | • | • |
| 4 - Information Literacy                            | •                 | • | • | • | • | • |
| 5 - Team Work                                       | _                 |   |   |   |   |   |
| 6 - Information Technology Competence               | •                 | • | • | • |   |   |
| 7 - Cross Cultural Competence                       |                   |   |   |   |   |   |
| 8 - Ethical practice                                |                   |   |   |   |   |   |
| 9 - Social Innovation                               |                   |   |   |   |   |   |
| 10 - Aboriginal and Torres Strait Islander Cultures |                   |   |   |   |   |   |

# Alignment of Assessment Tasks to Graduate Attributes

| Assessment Tasks               | Graduate Attributes |   |   |   |   |   |   |   |   |    |
|--------------------------------|---------------------|---|---|---|---|---|---|---|---|----|
|                                | 1                   | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 1 - In-class Test(s) - 15%     | •                   | • | • | • |   |   |   |   |   |    |
| 2 - Laboratory/Practical - 15% | •                   | • | • | • |   | • |   |   |   |    |
| 3 - Online Test - 15%          | •                   | • | • | • |   | • |   |   |   |    |
| 4 - Examination - 55%          | •                   | • | • | • |   |   |   |   |   |    |

# Textbooks and Resources

# Textbooks

ENEM14011

### Prescribed

### Applied Thermodynamics for Engineering Technologists

Edition: 5th (1993) Authors: Eastop, T.D. and McConkey, A. Pearson, Prentice Hall Harlow , Essex , UK ISBN: 9780582091931 Binding: Paperback ENEM14011

### Prescribed

### Thermodynamics and Transport Properties of Fluids (SI Units)

Edition: 5th (1995) Authors: Rogers, G.F.C. & Mayhew, Y.R. Blackwell ISBN: 9780631197034 Binding: Paperback

### Additional Textbook Information

Paper copies can be purchased from the CQUni Bookshop here: <u>http://bookshop.cqu.edu.au</u> (search on the Unit code)

### View textbooks at the CQUniversity Bookshop

### **IT** Resources

#### You will need access to the following IT resources:

- CQUniversity Student Email
- Internet
- Unit Website (Moodle)
- Access to a scanner.
- Video and audio equipment to join online tutorials

# **Referencing Style**

All submissions for this unit must use the referencing styles below:

- <u>Harvard (author-date)</u>
- <u>Turabian</u>

For further information, see the Assessment Tasks.

# **Teaching Contacts**

Ramadas Narayanan Unit Coordinator r.narayanan@cqu.edu.au

# Schedule

Week 1 - 09 Mar 2020

Module/Topic

Chapter

**Events and Submissions/Topic** 

| Heat Transfer - Conduction,<br>convection, radiation, Fourier's law of<br>conduction, Newton's law of cooling,<br>composite walls and the electrical<br>analogy, heat flow through a cylinder<br>and sphere                                                                                                                       | Chapter 16 - Pages 561-576 | Tutorial Problems for weeks 1 & 2:<br>16.1, 16.5, 16.6, 16.8, 16.16, 16.18,<br>16.20, 16.21, 16.22, 16.30, 16.37,<br>16.38, 16.44, 16.46                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Week 2 - 16 Mar 2020                                                                                                                                                                                                                                                                                                              |                            |                                                                                                                                                                                                                           |
| Module/Topic                                                                                                                                                                                                                                                                                                                      | Chapter                    | <b>Events and Submissions/Topic</b>                                                                                                                                                                                       |
| Heat Transfer - Forced convection,<br>natural convection, heat exchangers,<br>heat exchanger effectiveness,<br>extended surfaces, black body<br>radiation, grey body, Stefan-<br>Boltzmann law, Lambert's law and the<br>geometric factor, radiant interchange<br>between grey bodies, heat transfer<br>coefficient for radiation | Chapter 16 - Pages 599-650 | Tutorial Problems for weeks 1 & 2:<br>16.1, 16.5, 16.6, 16.8, 16.16, 16.18,<br>16.20, 16.21, 16.22, 16.30, 16.37,<br>16.38, 16.44, 16.46                                                                                  |
| Week 3 - 23 Mar 2020                                                                                                                                                                                                                                                                                                              |                            |                                                                                                                                                                                                                           |
| Module/Topic                                                                                                                                                                                                                                                                                                                      | Chapter                    | Events and Submissions/Topic                                                                                                                                                                                              |
| Internal Combustion Engines - Four-<br>stroke cycle, two-stroke cycle, other<br>types of engines, criteria of<br>performance, engine output and<br>efficiency, performance characteristics                                                                                                                                        | Chapter 13 - Pages 419-442 | Tutorial Problems for weeks 3 & 4:<br>13.1, 13.2, 13.6, 13.8, 13.9, 13.10,<br>13.11,13.13                                                                                                                                 |
| Week 4 - 30 Mar 2020                                                                                                                                                                                                                                                                                                              |                            |                                                                                                                                                                                                                           |
| Module/Topic                                                                                                                                                                                                                                                                                                                      | Chapter                    | <b>Events and Submissions/Topic</b>                                                                                                                                                                                       |
| Internal Combustion Engines - Factors<br>influencing performance, real cycles<br>and the air standard cycle, properties<br>of fuels for IC engines, fuel systems,<br>measurement of air and fuel flow<br>rates, supercharging, engine<br>emissions                                                                                | Chapter 13 - Pages 442-475 | Residential school for Mixed Mode<br>students<br>Tutorial Problems for weeks 3 & 4:<br>13.1, 13.2, 13.6, 13.8, 13.9, 13.10,<br>13.11,13.13<br><b>In-Class Test</b> Due: Week 4<br>Wednesday (1 Apr 2020) 10:00 am<br>AEST |
| Week 5 - 06 Apr 2020                                                                                                                                                                                                                                                                                                              |                            |                                                                                                                                                                                                                           |
| Module/Topic                                                                                                                                                                                                                                                                                                                      | Chapter                    | Events and Submissions/Topic                                                                                                                                                                                              |
| Combustion - Basic chemistry, fuels,<br>combustion equations, stoichiometric<br>air-fuel ratio                                                                                                                                                                                                                                    | Chapter 7 - Pages 176-183  | Tutorial Problems for weeks 5-7: 7.1,<br>7.3, 7.5, 7.6, 7.8, 7.9, 7.12                                                                                                                                                    |
| Vacation Week - 13 Apr 2020                                                                                                                                                                                                                                                                                                       |                            |                                                                                                                                                                                                                           |
| Module/Topic                                                                                                                                                                                                                                                                                                                      | Chapter                    | Events and Submissions/Topic                                                                                                                                                                                              |
| Week 6 - 20 Apr 2020                                                                                                                                                                                                                                                                                                              |                            |                                                                                                                                                                                                                           |
| Module/Topic                                                                                                                                                                                                                                                                                                                      | Chapter                    | <b>Events and Submissions/Topic</b>                                                                                                                                                                                       |
| Combustion - Exhaust and flue gas<br>analysis, practical analysis of<br>combustion products                                                                                                                                                                                                                                       | Chapter 7 - Pages 183-200  | Tutorial Problems for weeks 5-7: 7.1,<br>7.3, 7.5, 7.6, 7.8, 7.9, 7.12                                                                                                                                                    |
| Week 7 - 27 Apr 2020                                                                                                                                                                                                                                                                                                              |                            |                                                                                                                                                                                                                           |
| Module/Topic                                                                                                                                                                                                                                                                                                                      | Chapter                    | <b>Events and Submissions/Topic</b>                                                                                                                                                                                       |
| Combustion - Enthalpy of formation,<br>calorific value of fuels, power plant<br>thermal efficiency, practical<br>determination of calorific values, air<br>and fuel-vapour mixtures                                                                                                                                               | Chapter 7 - Pages 219-230  | Tutorial Problems for weeks 5-7: 7.1,<br>7.3, 7.5, 7.6, 7.8, 7.9, 7.12                                                                                                                                                    |
| Wook 8 - 04 May 2020                                                                                                                                                                                                                                                                                                              |                            |                                                                                                                                                                                                                           |

Week 8 - 04 May 2020

| Module/Topic                                                                                                                                                                                                                    | Chapter                        | <b>Events and Submissions/Topic</b>                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------|
| Gas Turbines - Practical gas turbine<br>cycle, modifications to the basic cycle,<br>combustion,                                                                                                                                 | Chapter 9 - Pages 260-283      | Tutorial Problems: 9.1, 9.2, 9.3, 9.5                                                    |
| Week 9 - 11 May 2020                                                                                                                                                                                                            |                                |                                                                                          |
| Module/Topic                                                                                                                                                                                                                    | Chapter                        | <b>Events and Submissions/Topic</b>                                                      |
| Nozzles and Jet Propulsion - Nozzle                                                                                                                                                                                             |                                | Tutorial Problems for weeks 9-11:<br>10.1, 10.2, 10.3, 10.4, 10.7, 10.8, 10.9            |
| shape, critical pressure ratio,<br>maximum mass flow                                                                                                                                                                            | Chapter 10 - Pages 287-298     | <b>Online Test</b> Due: Week 9 Wednesday (13 May 2020) 11:20 am AEST                     |
| Week 10 - 18 May 2020                                                                                                                                                                                                           |                                |                                                                                          |
| Module/Topic                                                                                                                                                                                                                    | Chapter                        | <b>Events and Submissions/Topic</b>                                                      |
| Nozzles and Jet Propulsion - Nozzles                                                                                                                                                                                            |                                | Tutorial Problems for weeks 9-11:<br>10.1, 10.2, 10.3, 10.4, 10.7, 10.8, 10.9            |
| off the design pressure ratio, nozzle<br>efficiency                                                                                                                                                                             | Chapter 10 - Pages 298-304     | Laboratories and Video<br>Presentation Due: Week 10 Monday<br>(18 May 2020) 9:00 am AEST |
| Week 11 - 25 May 2020                                                                                                                                                                                                           |                                |                                                                                          |
| Module/Topic                                                                                                                                                                                                                    | Chapter                        | <b>Events and Submissions/Topic</b>                                                      |
| Nozzles and Jet Propulsion -<br>Stagnation conditions, jet propulsion,<br>turbojet, turboprop,                                                                                                                                  | Chapter 10 - Pages 309-325     | Tutorial Problems for weeks 9-11:<br>10.1, 10.2, 10.3, 10.4, 10.7, 10.8, 10.9            |
| Week 12 - 01 Jun 2020                                                                                                                                                                                                           |                                |                                                                                          |
| Module/Topic                                                                                                                                                                                                                    | Chapter                        | <b>Events and Submissions/Topic</b>                                                      |
| Compressors - Positive displacement<br>machines, reciprocating compressors,<br>reciprocating compressors including<br>clearance, multistage compression,<br>steady-flow analysis, rotary machines,<br>vacuum pumps, air motors, | Chapter 12 - Pages 381-415     | Tutorial Problems: 12.3, 12.5, 12.9                                                      |
| Review/Exam Week - 08 Jun 2020                                                                                                                                                                                                  |                                |                                                                                          |
| Module/Topic                                                                                                                                                                                                                    | Chapter                        | Events and Submissions/Topic                                                             |
| Review                                                                                                                                                                                                                          | All chapters previously stated | Revise all tutorial problems and worked examples from the textbook.                      |
| Exam Week - 15 Jun 2020                                                                                                                                                                                                         |                                |                                                                                          |
| Module/Topic                                                                                                                                                                                                                    | Chapter                        | Events and Submissions/Topic                                                             |

# Assessment Tasks

# 1 In-Class Test

Assessment Type In-class Test(s)

### In-class lest(s)

### Task Description

Answer questions in a two-hour test format relating to the topics from weeks 1-3. On-campus students will sit the test inperson during the normal timetabled class. Mixed-mode students will sit the test together with the Rockhampton students during the residential school. All students need to ensure that they are available on the day and at the allocated time. No extensions are possible.

### Assessment Due Date

Week 4 Wednesday (1 Apr 2020) 10:00 am AEST

### **Return Date to Students**

Week 6 Monday (20 Apr 2020)

Global feedback and individual marks will be added to Moodle once marking has been completed

### Weighting

15%

### Minimum mark or grade

1%

### Assessment Criteria

You will be graded on the following criteria:

- correct answers to appropriate levels of significant figures as well as correct units
- correct selection and application of theoretical concepts to the specific question situation
- accuracy and presentation quality of diagrams and schematics used to solve the questions

### **Referencing Style**

- Harvard (author-date)
- <u>Turabian</u>

### Submission

Offline

### Submission Instructions

Students should hand their answer script to the supervising staff member on their campus at the conclusion of the test.

### Learning Outcomes Assessed

- Analyse and explain the principles of heat transfer and conversion between heat energy and mechanical power
- Analyse and evaluate the performance of heat exchangers and internal combustion engines

### **Graduate Attributes**

- Communication
- Problem Solving
- Critical Thinking
- Information Literacy

# 2 Laboratories and Video Presentation

### Assessment Type

### Laboratory/Practical

### Task Description

Each student is required to complete the following:

- 1. Data collection for heat exchangers (group work) (Pass/Fail)
- 2. Data collection for diesel engine (group work) (Pass/Fail)
- 3. Data collection for petrol engine (group work) (Pass/Fail)
- Data processing and spreadsheet presentation of results for heat exchangers (individual work) (3%)
- 5. Data processing and spreadsheet presentation of results for diesel engine (individual work) (3%)
- 6. Data processing and spreadsheet presentation of results for petrol engine (individual work) (3%)
- 7. Prepare a 10-minute video presentation which highlights the results of your lab work (individual work) (6%)

The residential school for Mixed Mode students will be held in Rockhampton, 1-3 April 2020. A schedule for on-campus and Mixed Mode students will be supplied separately in Moodle. The laboratory activities and video presentation are compulsory, non-attendance and/or nonsubmission will be marked as zero and will result in a Fail for the entire unit.

### Assessment Due Date

Week 10 Monday (18 May 2020) 9:00 am AEST

To be negotiated with lab technicians and unit coordinator. Each campus is operating independently.

### **Return Date to Students**

Week 12 Monday (1 June 2020)

Feedback and guidance provided during the lab sessions, after marking of each spreadsheet and after marking of the video presentation.

### Weighting

15%

Minimum mark or grade

50%

### **Assessment Criteria**

The data collection components are Pass/Fail. Students are expected to participate in the lab activity in order to enhance their understanding of the concepts demonstrated by each lab activity. Non-attendance and/or non-participation will result in a fail grade for the labs and for the overall unit. The spreadsheets will be graded on the following criteria:

- Correct presentation of raw data
- Correct processing of raw data
- · Correct presentation of results in table format
- Correct presentation of results in graphical format

The video presentation will be graded on the following criteria:

- Accuracy and clarity of presentation slides
- Effectiveness of communication of laboratory results
- Duration of presentation

### **Referencing Style**

- Harvard (author-date)
- Turabian

### Submission

Online

### Learning Outcomes Assessed

- Analyse and explain the principles of heat transfer and conversion between heat energy and mechanical power
- Analyse and evaluate the performance of heat exchangers and internal combustion engines

### **Graduate Attributes**

- Communication
- Problem Solving
- Critical Thinking
- Information Literacy
- Information Technology Competence

# 3 Online Test

### Assessment Type

**Online Test** 

### **Task Description**

Answer questions in a two-hour test format relating to the topics from weeks 4-7. On-campus and mixed-mode students will sit the test on the same day and time and submit a scanned or photographed copy of their answers into Moodle within 20 minutes of the end of the test. All students need to ensure that they are available on the day and at the allocated time. No extensions are possible.

### **Assessment Due Date**

Week 9 Wednesday (13 May 2020) 11:20 am AEST

### **Return Date to Students**

Week 11 Monday (25 May 2020) Global feedback and individual marks will be added to Moodle once marking has been completed

### Weighting

15%

Minimum mark or grade

1%

### **Assessment Criteria**

You will be graded on the following criteria:

- correct answers to appropriate levels of significant figures as well as correct units
- correct selection and application of theoretical concepts to the specific question situation
- accuracy and quality of presentation of diagrams and schematics used to solve the questions

### **Referencing Style**

- Harvard (author-date)
- <u>Turabian</u>

### Submission

Online

#### Learning Outcomes Assessed

- Analyse and explain combustion calculations and processes
- Analyse and evaluate the performance of gas turbines with respect to jet propulsion

### **Graduate Attributes**

- Communication
- Problem Solving
- Critical Thinking
- Information Literacy
- Information Technology Competence

# Examination

### Outline

Complete an invigilated examination.

#### Date

During the examination period at a CQUniversity examination centre.

### Weighting

55%

#### Length 180 minutes

Minimum mark or grade

50

# Exam Conditions

Restricted.

### Materials

Dictionary - non-electronic, concise, direct translation only (dictionary must not contain any notes or comments).

# Academic Integrity Statement

As a CQUniversity student you are expected to act honestly in all aspects of your academic work.

Any assessable work undertaken or submitted for review or assessment must be your own work. Assessable work is any type of work you do to meet the assessment requirements in the unit, including draft work submitted for review and feedback and final work to be assessed.

When you use the ideas, words or data of others in your assessment, you must thoroughly and clearly acknowledge the source of this information by using the correct referencing style for your unit. Using others' work without proper acknowledgement may be considered a form of intellectual dishonesty.

Participating honestly, respectfully, responsibly, and fairly in your university study ensures the CQUniversity qualification you earn will be valued as a true indication of your individual academic achievement and will continue to receive the respect and recognition it deserves.

As a student, you are responsible for reading and following CQUniversity's policies, including the **Student Academic Integrity Policy and Procedure**. This policy sets out CQUniversity's expectations of you to act with integrity, examples of academic integrity breaches to avoid, the processes used to address alleged breaches of academic integrity, and potential penalties.

#### What is a breach of academic integrity?

A breach of academic integrity includes but is not limited to plagiarism, self-plagiarism, collusion, cheating, contract cheating, and academic misconduct. The Student Academic Integrity Policy and Procedure defines what these terms mean and gives examples.

#### Why is academic integrity important?

A breach of academic integrity may result in one or more penalties, including suspension or even expulsion from the University. It can also have negative implications for student visas and future enrolment at CQUniversity or elsewhere. Students who engage in contract cheating also risk being blackmailed by contract cheating services.

#### Where can I get assistance?

For academic advice and guidance, the <u>Academic Learning Centre (ALC)</u> can support you in becoming confident in completing assessments with integrity and of high standard.

#### What can you do to act with integrity?





Seek Help If you are not sure about how to cite or reference in essays, reports etc, then seek help from your lecturer, the library or the Academic Learning Centre (ALC)



Produce Original Work Originality comes from your ability to read widely, think critically, and apply your gained knowledge to address a question or problem