CQUniversity Unit Profile

In Progress

Please note that this Unit Profile is still in progress. The content below is subject to change.
ENEM14014 Capstone Thermofluid Engineering
Capstone Thermofluid Engineering
All details in this unit profile for ENEM14014 have been officially approved by CQUniversity and represent a learning partnership between the University and you (our student).
The information will not be changed unless absolutely necessary and any change will be clearly indicated by an approved correction included in the profile.
General Information

Overview

This unit provides you with opportunities to develop and demonstrate your professional capabilities in the field of thermofluid engineering. You will analyse, explain and evaluate the performance of air-conditioning and refrigeration plant; and mass, heat and energy transfer processes in industrial plant and processes. You will describe types and characteristics of fluid machinery, apply the theory of energy transfer to its operation, and analyse complex fluid flows using computational methods. You will then apply discipline theories and methods to design, implementation, operation and maintenance of industrial mechanical systems. You are required to show you can work both individually and collaboratively, to solve problems, and document and communicate their work clearly in a professional manner. In this unit, you must complete compulsory practical activities. Refer to the Engineering Undergraduate Course Moodle site for proposed dates.

Details

Career Level: Undergraduate
Unit Level: Level 4
Credit Points: 12
Student Contribution Band: 8
Fraction of Full-Time Student Load: 0.25

Pre-requisites or Co-requisites

ENEM13014 Thermodynamics or ENEM12003 Thermodynamics] and ENEM12006 Fluid Mechanics [or ENEM12001 Fluid Mechanics

Important note: Students enrolled in a subsequent unit who failed their pre-requisite unit, should drop the subsequent unit before the census date or within 10 working days of Fail grade notification. Students who do not drop the unit in this timeframe cannot later drop the unit without academic and financial liability. See details in the Assessment Policy and Procedure (Higher Education Coursework).

Offerings For Term 1 - 2023

Bundaberg
Cairns
Gladstone
Mackay
Mixed Mode
Rockhampton

Attendance Requirements

All on-campus students are expected to attend scheduled classes – in some units, these classes are identified as a mandatory (pass/fail) component and attendance is compulsory. International students, on a student visa, must maintain a full time study load and meet both attendance and academic progress requirements in each study period (satisfactory attendance for International students is defined as maintaining at least an 80% attendance record).

Residential Schools

This unit has a Compulsory Residential School for distance mode students and the details are:
Click here to see your Residential School Timetable.

Class and Assessment Overview

Recommended Student Time Commitment

Each 12-credit Undergraduate unit at CQUniversity requires an overall time commitment of an average of 25 hours of study per week, making a total of 300 hours for the unit.

Class Timetable

Bundaberg, Cairns, Emerald, Gladstone, Mackay, Rockhampton, Townsville
Adelaide, Brisbane, Melbourne, Perth, Sydney

Assessment Overview

1. Presentation and Written Assessment
Weighting: 25%
2. Presentation and Written Assessment
Weighting: 20%
3. Practical and Written Assessment
Weighting: 20%
4. In-class Test(s)
Weighting: 35%

Assessment Grading

This is a graded unit: your overall grade will be calculated from the marks or grades for each assessment task, based on the relative weightings shown in the table above. You must obtain an overall mark for the unit of at least 50%, or an overall grade of ‘pass’ in order to pass the unit. If any ‘pass/fail’ tasks are shown in the table above they must also be completed successfully (‘pass’ grade). You must also meet any minimum mark requirements specified for a particular assessment task, as detailed in the ‘assessment task’ section (note that in some instances, the minimum mark for a task may be greater than 50%). Consult the University’s Grades and Results Policy for more details of interim results and final grades.

Previous Student Feedback

Feedback, Recommendations and Responses

Every unit is reviewed for enhancement each year. At the most recent review, the following staff and student feedback items were identified and recommendations were made.

Feedback from Moodle Feedback

Feedback

Incorporating the task lists for the PBL projects from the lecture slides to the assessment criteria sheet.

Recommendation

The project task lists will be incorporated in the criteria sheet in addition to the lecture slides.

Feedback from Moodle Feedback

Feedback

Additional tutorial questions on two topics will help students prepare better for the class test.

Recommendation

Additional tutorial questions on the identified topics will be incorporated.

Unit Learning Outcomes
On successful completion of this unit, you will be able to:
  1. Analyse, explain and evaluate performance characteristics and determine load on air conditioning and refrigeration plants
  2. Analyse, explain and evaluate mass, energy and heat transfer processes in industrial plant and components, and industrial processes
  3. Describe types and characteristics fluid machinery and apply and explain the theory of energy transfer to its operation in engineering applications
  4. Explain and analyse complex flows and computational fluid dynamics methods in such flows
  5. Apply discipline theories and methods to the problems of designing, implementing, operating and maintaining mechanical systems in industrial contexts
  6. Communicate professionally and provide evidence of personal reflection on, and critical assessment of, team contributions and professional development, and development of technical competence in thermofluid engineering
  7. Reflect upon, formulate and solve problems and record and communicate professionally the approach used to resolve problems and the reasons for adopting such approaches to problems.

The Learning Outcomes for this unit are linked with the Engineers Australia Stage 1 Competency Standards for Professional Engineers in the areas of 1. Knowledge and Skill Base, 2. Engineering Application Ability and 3. Professional and Personal Attributes at the following levels:

Introductory
1.6 Understanding of the scope, principles, norms, accountabilities and bounds of sustainable engineering practice in the specific discipline. (LO: 1N 2N 3N 4N 5N)
Intermediate
1.3 In-depth understanding of specialist bodies of knowledge within the engineering discipline. (LO: 1I 2I 3I 4I 5I)
1.5 Knowledge of engineering design practice and contextual factors impacting the engineering discipline. (LO: 1I 2I 3I 4I 5I)
3.1 Ethical conduct and professional accountability. (LO: 1I 2I 3N 4N 5N 6I 7I)
3.3 Creative, innovative and pro-active demeanour. (LO: 1I 2I 3N 4N 5N)
3.4 Professional use and management of information. (LO: 1I 2I 3I 4I 5I 6I 7I)
Advanced
1.1 Comprehensive, theory-based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline. (LO: 1A 2A 3I 4N 5I)
1.2 Conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences which underpin the engineering discipline. (LO: 1A 2A 3I 4I 5A)
1.4 Discernment of knowledge development and research directions within the engineering discipline. (LO: 1A 2I 3I 4I 5I)
2.1 Application of established engineering methods to complex engineering problem solving. (LO: 1A 2A 3I 4I 5I)
2.2 Fluent application of engineering techniques, tools and resources. (LO: 1A 2A 3I 4A 5N)
2.3 Application of systematic engineering synthesis and design processes. (LO: 1A 2A 3I 4A 5I)
2.4 Application of systematic approaches to the conduct and management of engineering projects. (LO: 1A 2A 3I 4A 5I)
3.2 Effective oral and written communication in professional and lay domains. (LO: 1A 2A 3A 4A 5A 6A 7A)
3.6 Effective team membership and team leadership. (LO: 6A 7A)

Note: LO refers to the Learning Outcome number(s) which link to the competency and the levels: N – Introductory, I – Intermediate and A - Advanced.
Refer to the Engineering Undergraduate Course Moodle site for further information on the Engineers Australia's Stage 1 Competency Standard for Professional Engineers and course level mapping information https://moodle.cqu.edu.au/course/view.php?id=1511

Alignment of Learning Outcomes, Assessment and Graduate Attributes
N/A Level
Introductory Level
Intermediate Level
Graduate Level
Professional Level
Advanced Level

Alignment of Assessment Tasks to Learning Outcomes

Assessment Tasks Learning Outcomes
1 2 3 4 5 6 7
1 - Presentation and Written Assessment - 25%
2 - Presentation and Written Assessment - 20%
3 - Practical and Written Assessment - 20%
4 - In-class Test(s) - 35%

Alignment of Graduate Attributes to Learning Outcomes

Graduate Attributes Learning Outcomes
1 2 3 4 5 6 7
1 - Communication
2 - Problem Solving
3 - Critical Thinking
4 - Information Literacy
5 - Team Work
6 - Information Technology Competence
7 - Cross Cultural Competence
8 - Ethical practice
9 - Social Innovation
10 - Aboriginal and Torres Strait Islander Cultures
Textbooks and Resources

Textbooks

Prescribed

Munson, Young and Okiishi's Fundamentals of Fluid Mechanics

Edition: 9th (2021)
Authors: Andrew Gerhart, John Hochstein and Phillip Gerhart
John Wiley & Sons
Singapore Singapore , Singapore , Singapore
ISBN: 9781119703266
Binding: Hardcover
Prescribed

Refrigeration and Air Conditioning

2nd edition (1982)
Authors: Stoecker, W & Jones, J
McGraw Hill
London London , UK
ISBN: 0070665915
Binding: Hardcover
Supplementary

Applied Thermodynamics for Engineering Technologiest

Edition: 5th (1993)
Authors: T.D. Eastop & A. McConkey
Pearson
London London , London , England
ISBN: 978-0-582-09193-1
Binding: Hardcover
Supplementary

Elementary Fluid Mechanics

Edition: 7th (1995)
Authors: Street, Watters and Vennard
John Wiley & Sons
USA
ISBN: ISBN 0-471-01310-2
Binding: Hardcover
Supplementary

Principles Of Heating, Ventilation And Air Conditioning With Worked Examples

(2016)
Authors: Wijeysundera, N
World Scientific Publications
Singapore
ISBN: 9789814667760
Binding: Paperback

Additional Textbook Information

The text by Stoecker is Out of Print. You may be able to access an online copy through the CQUni Library website.

IT Resources

You will need access to the following IT resources:
  • CQUniversity Student Email
  • Internet
  • Unit Website (Moodle)
Academic Integrity Statement

Information for Academic Integrity Statement has not been released yet.

This unit profile has not yet been finalised.