Profile information current as at 17/04/2024 11:38 am All details in this unit profile for ENEX13005 have been officially approved by CQUniversity and represent a learning partnership between the University and you (our student). The information will not be changed unless absolutely necessary and any change will be clearly indicated by an approved correction included in the profile. # **General Information** ## Overview This unit will introduce you to the fundamental synthesis of mechanisms and machines. You will start by carrying out analysis of linkages in terms of their transmission angles, toggle positions and mobility for a certain mechanism. The kinematic analysis of any mechanism requires an acceleration analysis that depends on its position and velocity. You will be able to carry out this position, velocity, and acceleration analysis of these mechanisms (kinematic systems) using analytical equations and graphical methods. This unit will enable you to work on 3D CAD modelling and computer simulation of various mechanisms or machines. You will move on to kinetic analysis of systems thereby discussing static and dynamic balancing of rotating masses. After learning concepts of dynamics, you will study vibrations (free and forced) of single and multi-degree of freedom systems and will be able to carry out analysis of such systems using force and energy methods. In this unit, you must complete compulsory practical activities. Refer to the Engineering Undergraduate Course Moodle site for proposed dates. # **Details** Career Level: Undergraduate Unit Level: *Level 3* Credit Points: 6 Student Contribution Band: 8 Fraction of Full-Time Student Load: 0.125 # Pre-requisites or Co-requisites MATH11219 Applied Calculus AND [ENEM12007 Statics & Dynamics OR ENEM12010 Engineering Dynamics]. Important note: Students enrolled in a subsequent unit who failed their pre-requisite unit, should drop the subsequent unit before the census date or within 10 working days of Fail grade notification. Students who do not drop the unit in this timeframe cannot later drop the unit without academic and financial liability. See details in the <a href="Assessment Policy and Procedure (Higher Education Coursework">Assessment Policy and Procedure (Higher Education Coursework)</a>. # Offerings For Term 1 - 2023 - Mackay - Mixed Mode # Attendance Requirements All on-campus students are expected to attend scheduled classes – in some units, these classes are identified as a mandatory (pass/fail) component and attendance is compulsory. International students, on a student visa, must maintain a full time study load and meet both attendance and academic progress requirements in each study period (satisfactory attendance for International students is defined as maintaining at least an 80% attendance record). # Residential Schools This unit has a Compulsory Residential School for distance mode students and the details are: Click here to see your Residential School Timetable. # Website This unit has a website, within the Moodle system, which is available two weeks before the start of term. It is important that you visit your Moodle site throughout the term. Please visit Moodle for more information. # Class and Assessment Overview ## Recommended Student Time Commitment Each 6-credit Undergraduate unit at CQUniversity requires an overall time commitment of an average of 12.5 hours of study per week, making a total of 150 hours for the unit. # Class Timetable ### **Regional Campuses** Bundaberg, Cairns, Emerald, Gladstone, Mackay, Rockhampton, Townsville ### **Metropolitan Campuses** Adelaide, Brisbane, Melbourne, Perth, Sydney # **Assessment Overview** 1. Online Quiz(zes) Weighting: 20% 2. Written Assessment Weighting: 15% 3. Written Assessment Weighting: 20% 4. Practical Assessment Weighting: 15% 5. **Portfolio** Weighting: 30% # Assessment Grading This is a graded unit: your overall grade will be calculated from the marks or grades for each assessment task, based on the relative weightings shown in the table above. You must obtain an overall mark for the unit of at least 50%, or an overall grade of 'pass' in order to pass the unit. If any 'pass/fail' tasks are shown in the table above they must also be completed successfully ('pass' grade). You must also meet any minimum mark requirements specified for a particular assessment task, as detailed in the 'assessment task' section (note that in some instances, the minimum mark for a task may be greater than 50%). Consult the <u>University's Grades and Results Policy</u> for more details of interim results and final grades. # **CQUniversity Policies** # All University policies are available on the CQUniversity Policy site. You may wish to view these policies: - · Grades and Results Policy - Assessment Policy and Procedure (Higher Education Coursework) - Review of Grade Procedure - Student Academic Integrity Policy and Procedure - Monitoring Academic Progress (MAP) Policy and Procedure Domestic Students - Monitoring Academic Progress (MAP) Policy and Procedure International Students - Student Refund and Credit Balance Policy and Procedure - Student Feedback Compliments and Complaints Policy and Procedure - Information and Communications Technology Acceptable Use Policy and Procedure This list is not an exhaustive list of all University policies. The full list of University policies are available on the CQUniversity Policy site. # Previous Student Feedback # Feedback, Recommendations and Responses Every unit is reviewed for enhancement each year. At the most recent review, the following staff and student feedback items were identified and recommendations were made. # Feedback from In person conversation #### **Feedback** Students complimented the usefulness and relevance of the lab activities to the theories learned. #### Recommendation While lab activities are to further improve, its project-based assessment items should be revised to have more direct connections to the laboratory components. ## Feedback from Self-examination #### **Feedback** Students seemed to struggle with understanding the given tasks for the open-ended assignment. #### Recommendation Students should be provided with detailed descriptions and requirements for the tasks of the interim report. Students should be provided with the unit coordinator's feedback for their interim report in addition to those from their peers. ## Feedback from Self-examination #### Feedback MATLAB and its toolboxes were introduced and used for the first time. The difficulty level of the related tasks and coverage seemed to be excessive. #### Recommendation The tasks in the assessment items involving MATLAB and its toolboxes should be reviewed and adjusted. Students should be provided with more constructive tutorials to scaffold their understanding of MATLAB and its toolboxes in the context of machine design and vibrations. # **Unit Learning Outcomes** ## On successful completion of this unit, you will be able to: - 1. Apply key concepts of kinetics and kinematics to analyse machine design and synthesis - 2. Use analytical and graphical techniques to carry out position, velocity, and acceleration analysis - 3. Apply concepts of dynamics in balancing of rotating components - 4. Analyse vibrations in single and multiple degree of freedom systems - 5. Communicate professionally using relevant technical terminology, symbols, and diagrams and effectively document calculations and solutions - 6. Work autonomously and as a team member to analyse problems and present solutions. The Learning Outcomes for this unit are linked with the Engineers Australia Stage 1 Competency Standards for Professional Engineers in the areas of 1. Knowledge and Skill Base, 2. Engineering Application Ability and 3. Professional and Personal Attributes at the following levels: #### Intermediate - 1.2 Conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences which underpin the engineering discipline. (LO: 11 21 31 41) - 1.3 In-depth understanding of specialist bodies of knowledge within the engineering discipline. (LO: 11 21 31 41) #### **Advanced** - 1.1 Comprehensive, theory-based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline. (LO: 1A 2A 3A 4I) - 1.4 Discernment of knowledge development and research directions within the engineering discipline. (LO: 1A 4A) - 1.5 Knowledge of engineering design practice and contextual factors impacting the engineering discipline. (LO: 1A 4A) - 1.6 Understanding of the scope, principles, norms, accountabilities and bounds of sustainable engineering practice in the specific discipline. (LO: 5A 6A) - 2.1 Application of established engineering methods to complex engineering problem-solving. (LO: 1A 2A 3A 4A 6A) - 2.2 Fluent application of engineering techniques, tools and resources. (LO: 4A) - 2.3 Application of systematic engineering synthesis and design processes. (LO: 6A) - 2.4 Application of systematic approaches to the conduct and management of engineering projects. (LO: 5A 6A) - 3.2 Effective oral and written communication in professional and lay domains. (LO: 5A 6A) - 3.4 Professional use and management of information. (LO: 5A 6A) - 3.5 Orderly management of self, and professional conduct. (LO: 6A) - 3.6 Effective team membership and team leadership. (LO: 6A) Note: LO refers to the Learning Outcome number(s) which link to the competency and the levels: N - Introductory, I - Intermediate and A - Advanced. Refer to the Engineering Undergraduate Course Moodle site for further information on the Engineers Australia's Stage 1 Competency Standard for Professional Engineers and course level mapping information <a href="https://moodle.cqu.edu.au/course/view.php?id=1511">https://moodle.cqu.edu.au/course/view.php?id=1511</a> | | _ | | | | | | | | | | |---------------------------------------------------------------------|---|---|---|---|---|---|---|---|--|--| | N/A Level Introductory Level Graduate Level Advanced Level Advanced | | | | | | | | | | | | Alignment of Assessment Tasks to Learning Outcomes | | | | | | | | | | | | Assessment Tasks Learning Outcomes | | | | | | | | | | | | | 1 | 2 | 3 | | 4 | 5 | | 6 | | | | 1 - Online Quiz(zes) - 20% | • | • | | | | | | | | | | 2 - Written Assessment - 15% | • | • | | | | | | | | | | 3 - Written Assessment - 20% | | | • | | • | | | | | | | 4 - Practical Assessment - 15% | | | | | | • | | • | | | | 5 - Portfolio - 30% | | | • | | • | • | | • | | | | Alignment of Graduate Attributes to Learning Outcomes | | | | | | | | | | | | Graduate Attributes Learning Outcomes | | | | | | | | | | | | | | | 1 | 2 | 3 | 4 | 5 | 6 | | | | 1 - Communication | | | | | | | • | • | | | | 2 - Problem Solving | | | • | • | • | • | | • | | | | 3 - Critical Thinking | | | • | • | • | • | | • | | | | 4 - Information Literacy | | | | | | | | | | | | 5 - Team Work | | | | | | | | | | | | 6 - Information Technology Competence | | | • | • | • | • | • | • | | | | 7 - Cross Cultural Competence | | | | | | | | | | | | 8 - Ethical practice | | | | | | | | | | | | 9 - Social Innovation | | | | | | | | | | | | 10 - Aboriginal and Torres Strait Islander Cultures | | | | | | | | | | | | | | | | | | | | | | | Alignment of Learning Outcomes, Assessment and Graduate Attributes # Textbooks and Resources # **Textbooks** ENEX13005 ### **Supplementary** #### **Design of Machinery** Edition: 6th edn ISE (2020) Authors: Robert L. Norton McGraw Hill ISBN: 9781260590845 Binding: Paperback ENEX13005 # **Supplementary** #### **Mechanical Vibrations** Edition: 6th edn (2017) Authors: Singiresu S. Rao Pearson Education ISBN: 9781292178608 Binding: Paperback ## **IT Resources** ## You will need access to the following IT resources: - CQUniversity Student Email - Internet - Unit Website (Moodle) # Referencing Style All submissions for this unit must use the referencing style: <u>Harvard (author-date)</u> For further information, see the Assessment Tasks. # **Teaching Contacts** Jay Sul Unit Coordinator j.sul@cqu.edu.au # Schedule #### Week 1 - 06 Mar 2023 Module/Topic Chapter **Events and Submissions/Topic** Introduction and Kinematics fundamentals • Introduction to the unit and information session • Introduction to the machine design and vibration Design of Machinery (R. L. Norton) • Chapters 1 and 2 - Applications of kinematics - DoF in 2D and types of motion - Joints, links and kinematic diagrams ## Week 2 - 13 Mar 2023 Module/Topic Chapter **Events and Submissions/Topic** Graphical linkage synthesis • Linkage synthesis - Graphical, manual and dimensional techniques Design of Machinery (R. L. Norton) with examples Chapter 3 Two-position synthesis Three-position synthesis Week 3 - 20 Mar 2023 Module/Topic Chapter **Events and Submissions/Topic** Position analysis of linkages • Types of motion Position analysis - Graphical, Design of Machinery (R. L. Norton) algebraic and vector loop methods for • Chapter 4 four-bar linkages and four-bar-crank slider Week 4 - 27 Mar 2023 Module/Topic Chapter **Events and Submissions/Topic** Analytical linkage synthesis • 2 and 3 position motion generation Design of Machinery (R. L. Norton) by analytical and graphical synthesis Chapter 5 • 4 and 5 position motion generation using analytical synthesis Week 5 - 03 Apr 2023 Module/Topic Chapter **Events and Submissions/Topic** Velocity analysis of linkages Recap of Engineering Dynamics Design of Machinery (R. L. Norton) Graphical (vector) and instant centre Chapter 6 methods (Kennedy's theorem) Mechanical advantages Vacation Week - 10 Apr 2023 Module/Topic Chapter **Events and Submissions/Topic** Online Quiz - Kinematic analysis of **linkages** Due: Vacation Week Monday (10 Apr 2023) 11:59 pm AEST Week 6 - 17 Apr 2023 Module/Topic Chapter **Events and Submissions/Topic** Acceleration analysis of linkages • Graphical (vector) and analytical Design of Machinery (R. L. Norton) methods • Chapter 7 Interim report - Design of a · Coriolis acceleration universal PV solar panel cleaner Due: Week 6 Monday (17 Apr 2023) 11:59 pm AEST Week 7 - 24 Apr 2023 Module/Topic Chapter **Events and Submissions/Topic** Peer- and self-assessment for Interim report for Design of a Dynamics fundamentals walking mechanism with the Lumped models Design of Machinery (R. L. Norton) Kinetics · Chapter 10 minimum imbalance and · Virtual work vibration Due: Week 7 Friday (29 Apr. 2021) 11:59 pm AEST Week 8 - 01 May 2023 Module/Topic Chapter **Events and Submissions/Topic** | Static and Dynamic balancing • Static and dynamic balancing on rotating masses • Effect of balancing on shaking and input torque | Design of Machinery (R. L. Norton) • Chapter 12 | | | | | | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--| | Week 9 - 08 May 2023 | | | | | | | | | | Module/Topic | Chapter | <b>Events and Submissions/Topic</b> | | | | | | | | Basic concepts of vibration Importance and types of vibration Natural frequency Critical damping and damping ratio Introduction to mathematical modeling and Laplace transform | Mechanical Vibrations (S. S. Rao) • Chapters 1 | | | | | | | | | Week 10 - 15 May 2023 | | | | | | | | | | Module/Topic | Chapter | <b>Events and Submissions/Topic</b> | | | | | | | | Free and forced vibration • Forced harmonic vibration and resonance • Logarithmic decrement • Support motion • Rotating unbalance | Mechanical Vibrations (S. S. Rao) • Chapters 2 and 3 | Residential School, 16 May (Mandatory for both on-campus and mixed-mode students) | | | | | | | | Week 11 - 22 May 2023 | | | | | | | | | | Module/Topic | Chapter | Events and Submissions/Topic | | | | | | | | Transient vibration • Stability of a system • Poles and Zeros • Root Locus • Bode plot | Mechanical Vibrations (S. S. Rao) • Chapter 4 | | | | | | | | | Week 12 - 29 May 2023 | | | | | | | | | | Module/Topic | Chapter | <b>Events and Submissions/Topic</b> | | | | | | | | Two degree-of-freedom system • 2 DoF undamped free vibration • 2 DoF damped free vibration • 2 DoF forced vibration • 2 DoF translational and rotational | Mechanical Vibrations (S. S. Rao) • Chapter 5 | Vibration analysis of multi-DoF<br>system Due: Week 12 Friday (2 June<br>2023) 10:59 pm AEST | | | | | | | | Review/Exam Week - 05 Jun 2023 | | | | | | | | | | Module/Topic | Chapter | <b>Events and Submissions/Topic</b> | | | | | | | | | | <b>Laboratory worksheet</b> Due:<br>Review/Exam Week Monday (5 June<br>2023) 11:59 pm AEST | | | | | | | | Exam Week - 12 Jun 2023 | | | | | | | | | | Module/Topic | Chapter | <b>Events and Submissions/Topic</b> | | | | | | | | | | Final report - Design of a universal<br>PV solar panel cleaner Due: Exam<br>Week Friday (16 June 2023) 11:59 pm<br>AEST | | | | | | | # **Assessment Tasks** # 1 Online Quiz - Kinematic analysis of linkages # **Assessment Type** Online Quiz(zes) # **Task Description** This assignment assesses students with the content from Week 1 to Week 4. You must provide detailed solutions to the problems given in the assignment in order to demonstrate your knowledge and understanding of the concepts and processes incorporating relevant sketches, clear step-by-step solutions and conclusion/judgement on answers. ## **Number of Quizzes** 1 #### **Frequency of Quizzes** #### **Assessment Due Date** Vacation Week Monday (10 Apr 2023) 11:59 pm AEST #### **Return Date to Students** Students will get their results immediately after the due time, except for their sketches. #### Weighting 20% #### **Assessment Criteria** - Correctly identify the problem to be solved (key terms, units, elements or parts of a problem) - Choose the most appropriate approach to solving the problem - Clearly present the solutions with sketches (if necessary) for the problems - Attempt logical alternative approaches to solving the problem #### **Referencing Style** • Harvard (author-date) #### **Submission** Online #### **Submission Instructions** Students to finish their unlimited attempts for online quizzes through unit's Moodle site ### **Learning Outcomes Assessed** - Apply key concepts of kinetics and kinematics to analyse machine design and synthesis - Use analytical and graphical techniques to carry out position, velocity, and acceleration analysis # 2 Interim report - Design of a universal PV solar panel cleaner ## **Assessment Type** Written Assessment #### **Task Description** **Task 1**: You are required to design and 3D model a low DoF linkage system that can be used in a cleaning mechanism and/or mobile platform being able to travel over solar panels. You will be provided necessary design requirements. This task will need to be completed concurrently with Task 2. **Task 2**: Demonstrate the kinematic and kinetic analysis of the design of your choice. This task will need to be completed concurrently with Task 1. #### **Assessment Due Date** Week 6 Monday (17 Apr 2023) 11:59 pm AEST Peer and self-assessment task to be completed by Week 7 #### **Return Date to Students** Week 7 Friday (28 Apr 2023) Students to see feedback through the submission link #### Weighting 15% ## **Assessment Criteria** You are required to assess your peers' interim reports as well as your own according to the following marking guideline and are expected to provide sincere feedback and accurate marks for your peers. This is a valuable chance for reflection after viewing other submissions. 67% of this assessment will be from the marks from your peers and the rest will be from the quality of your feedback to your peers. - Presentation (/20) Judge the overall report presentation. Consider: - Does the report overall give you a good impression? - Does the quality of the presentation give you confidence in the quality of the content? - What is the overall quality of English expression? Is technical jargon correctly used? Is the language clear and concise? - Is the report correctly sectioned? Do the sections flow correctly and aid the overall argument? - Are figures presented in a clear way that maximises the communication of information? - Is the referencing consistent and easy to follow? - Does the abstract/executive summary cover all aspects of the report while maintaining its conciseness? - Overall, is the contained information efficiently communicated to the reader? - Context and aims (/20) Judge how well the project has been put into context. Consider: - What background information has been provided to justify that the project is meaningful/achievable? - Do you, as a reader, understand the context of the problem and how solving it makes a valuable contribution to knowledge? - Design of a mechanism and kinematic diagram (/20) Judge how well the biped mechanism has been modelled and how accurate kinematic analysis is. Consider: - A kinematic diagram that clearly describes the mechanism - Its design meets the requirement specified in the assignment document - Reasonable assumptions for its dimensions and materials; therefore, the mass of each link and the entire system is justified. - Kinematic analysis and verification process (/20) Judge how accurate the kinematic analysis has been conducted to describe its correct motion. Consider: - Good position, velocity and acceleration analysis with relevant diagrams - The relationship between the input motor speed and final motion speed has been defined. - Presentation of Autodesk Inventor model - Hand calculations have been verified with Dynamic Simulation in Autodesk Inventor - Discussions and conclusions (/10) Judge how well the results have been described and if a good summary is provided. - Correct interpretations and descriptions of the design and results - A good summary of the report and clear statements of meeting aims and objectives are defined in the introductory part - Identification of items to improve in the final report - Progress (/10) Judge if its progress is as expected up to Task 2 - Completion of Task 1 with all required deliverables - Completion of Task 2 with all required deliverables #### **Referencing Style** • Harvard (author-date) ### **Submission** Online #### **Submission Instructions** Submission to be made through a link provided in unit's Moodle site ## **Learning Outcomes Assessed** - · Apply key concepts of kinetics and kinematics to analyse machine design and synthesis - Use analytical and graphical techniques to carry out position, velocity, and acceleration analysis # 3 Vibration analysis of multi-DoF system #### **Assessment Type** Written Assessment #### **Task Description** - Task 1 Present your current design in 3D modelling and provide the mathematical model of it - **Task 2** Derive ODEs for the mathematical model from Task 1 and analyse the system under the given terrain conditions using Matlab Simulink - Task 3 Conduct modal analysis to define mode shapes of the system using Matlab Simulink #### **Assessment Due Date** Week 12 Friday (2 June 2023) 10:59 pm AEST #### **Return Date to Students** Review/Exam Week Friday (9 June 2023) Students to see feedback through the submission link #### Weighting 20% #### **Assessment Criteria** - Presentation (/25%) - The report is in a professional and consistent format. - The report needs the proposed specification (file format, length, etc.) - Good quality of English expression is demonstrated, and its language is clear and concise. - The report is properly sectioned to aid the overall argument. - All figures and tables are labelled properly and discussed in the text. - Figures and tables are relevant and informative. - Correct citation and reference styles are used in accordance with the suggested referencing system. - Good use of visual aids is demonstrated. - Introduction and background (/15%) - A clear statement about why the report was commissioned in the first place. - Comprehensive, detailed and focused context about the presented work is given. - Succinctly lead the reader to the purpose of the work being documented. - The objectives of the work are expressed well. - Previous reports and research, if the present report builds on, are included. - Methods and results (/25%) - Detailed information on the approach and/or materials used in the study - Sufficient references are provided to support the methodology used in the report. - Results are presented in a logical way. - Clear but concise evidence in the form of statistics, graphs and tables - Justification for conclusions and recommendations - Discussion (/20%) - Analysis using your own words on the method and results - Good interpretation and explanation of the results - Relation of the results with the literature - Examine whether and how the questions raised in the introduction have been answered. - Conclusions (/15%) - Clear agreement with all the objectives that were set out in the introduction is made. - The significant findings and elements from the report are highlighted. - The main points of the report are drawn. - A clear statement about how the topic relates to its context (an evaluation of the importance of the topic, implication and/or recommendation for future studies) #### **Referencing Style** Harvard (author-date) ### **Submission** Online #### **Submission Instructions** Submission to be made through a link provided in unit's Moodle site ## **Learning Outcomes Assessed** - Apply concepts of dynamics in balancing of rotating components - Analyse vibrations in single and multiple degree of freedom systems # 4 Laboratory worksheet #### **Assessment Type** Practical Assessment #### **Task Description** You are going to conduct three labs, namely Free vibration, Forced vibration and Mass balance. After conducting these labs, you will complete each task given in the lab worksheet template. You don't need to give lengthy answers for the discussion tasks. You must show all workings where applicable. You must cite the sources of your argument and discussions as per the referencing style specified in the unit profile. This lab worksheet must NOT exceed 15 pages. You will submit it to the submission link provided in Moodle. #### **Assessment Due Date** Review/Exam Week Monday (5 June 2023) 11:59 pm AEST ## **Return Date to Students** Review/Exam Week Friday (9 June 2023) Students to see feedback through the submission link #### Weighting 15% #### **Assessment Criteria** Each of the tasks given in the lab worksheet template will be assessed by - Accurate results - Accurate plots with correct axis titles and legends - Reasonable discussions with supporting references ## **Referencing Style** • Harvard (author-date) #### **Submission** Online ### **Submission Instructions** Submission to be made through a link provided in unit's Moodle site #### **Learning Outcomes Assessed** - Communicate professionally using relevant technical terminology, symbols, and diagrams and effectively document calculations and solutions - Work autonomously and as a team member to analyse problems and present solutions. # 5 Final report - Design of a universal PV solar panel cleaner # **Assessment Type** Portfolio #### **Task Description** Your final report will include Tasks 1 and 2 with further improvement from your interim report. Task 3: Conduct modal analysis of your design using Autodesk Inventor - Define the first 10 modes and discuss the significance of the analysis and results - Discuss discrepancies between the modal analysis in Autodesk Inventor and Matlab Simulink Task 4: Verification of your analysis and Evaluation of your design - Replicate your design in Autodesk Inventor - Verify your analysis in Task 2 using Dynamic Simulation in Autodesk Inventor ### **Assessment Due Date** Exam Week Friday (16 June 2023) 11:59 pm AEST ## **Return Date to Students** Students will receive their mark in 2 weeks of their submission. ## Weighting 30% ## Minimum mark or grade 50 #### **Assessment Criteria** The following criteria will be used to grade your report. This is not the suggested structure of your report. - Innovation and creativity (/20%) - The demonstrated mechanism is designed by oneself or an effort is made to improve the current design. - How complex or simple the chosen design is. - How accurate the mechanism is interpreted. - Presentation (/20%) - The report is in a professional and consistent format. - The report meets the proposed specification (file format, length, etc.) - Good quality of English expression is demonstrated, and its language is clear and concise. - The report is sectioned properly to aid the overall argument. - All figures and tables are labelled properly and discussed in the text. - Figures and tables are relevant and informative. - Correct citation and reference styles are used in accordance with the suggested referencing system - Good use of visual aids is demonstrated. - Introduction and background (/15%) - A clear statement about why the report was commissioned in the first place. - Comprehensive, detailed and focused context about the presented work is given. - Succinctly lead the reader to the purpose of the work being documented. - The objectives of the work are expressed well. - Previous reports and research, if the present report builds on, are included. - Methods and results (/20%) - Detailed information on the approach and/or materials used in the study - Sufficient references are provided to support the methodology used in the report. - Results are presented in a logical way. - Clear but concise evidence in the form of statistics, graphs and tables - Justification for conclusions and recommendations - Discussion (/15%) - Analysis using your own words on the method and results - Good interpretation and explanation of the results - Relation of the results with the literature - Examine whether and how the questions raised in the introduction have been answered. - Conclusions (/10%) - Clear agreement with all the objectives that were set out in the introduction is made. - The significant findings and elements from the report are highlighted. - The main points of the report are drawn. - A clear statement about how the topic relates to its context (an evaluation of the importance of the topic, implication and/or recommendation for future studies) ## **Referencing Style** • Harvard (author-date) #### **Submission** Online ### **Submission Instructions** Submission to be made through a link provided in unit's Moodle site #### **Learning Outcomes Assessed** - Apply concepts of dynamics in balancing of rotating components - Analyse vibrations in single and multiple degree of freedom systems - Communicate professionally using relevant technical terminology, symbols, and diagrams and effectively document calculations and solutions • Work autonomously and as a team member to analyse problems and present solutions. # **Academic Integrity Statement** As a CQUniversity student you are expected to act honestly in all aspects of your academic work. Any assessable work undertaken or submitted for review or assessment must be your own work. Assessable work is any type of work you do to meet the assessment requirements in the unit, including draft work submitted for review and feedback and final work to be assessed. When you use the ideas, words or data of others in your assessment, you must thoroughly and clearly acknowledge the source of this information by using the correct referencing style for your unit. Using others' work without proper acknowledgement may be considered a form of intellectual dishonesty. Participating honestly, respectfully, responsibly, and fairly in your university study ensures the CQUniversity qualification you earn will be valued as a true indication of your individual academic achievement and will continue to receive the respect and recognition it deserves. As a student, you are responsible for reading and following CQUniversity's policies, including the **Student Academic Integrity Policy and Procedure**. This policy sets out CQUniversity's expectations of you to act with integrity, examples of academic integrity breaches to avoid, the processes used to address alleged breaches of academic integrity, and potential penalties. ### What is a breach of academic integrity? A breach of academic integrity includes but is not limited to plagiarism, self-plagiarism, collusion, cheating, contract cheating, and academic misconduct. The Student Academic Integrity Policy and Procedure defines what these terms mean and gives examples. #### Why is academic integrity important? A breach of academic integrity may result in one or more penalties, including suspension or even expulsion from the University. It can also have negative implications for student visas and future enrolment at CQUniversity or elsewhere. Students who engage in contract cheating also risk being blackmailed by contract cheating services. #### Where can I get assistance? For academic advice and guidance, the <u>Academic Learning Centre (ALC)</u> can support you in becoming confident in completing assessments with integrity and of high standard. ### What can you do to act with integrity? #### **Be Honest** If your assessment task is done by someone else, it would be dishonest of you to claim it as your own #### Seek Help If you are not sure about how to cite or reference in essays, reports etc, then seek help from your lecturer, the library or the Academic Learning Centre (ALC) #### **Produce Original Work** Originality comes from your ability to read widely, think critically, and apply your gained knowledge to address a question or problem