CQUniversity Unit Profile
ENTM12006 Industrial Fluid Power
Industrial Fluid Power
All details in this unit profile for ENTM12006 have been officially approved by CQUniversity and represent a learning partnership between the University and you (our student).
The information will not be changed unless absolutely necessary and any change will be clearly indicated by an approved correction included in the profile.
General Information

Overview

This unit will teach students about designing fluid power systems for automated and semi-automated industrial plants. You will be exploring fluid power elements and their ISO standard symbols, designing fluid power circuits using hydraulic and pneumatic actuators, power sources, directional control and other control valves, sensors and control systems. Control technology may include both hydraulic and pneumatic systems integrated with programmable controllers (PLCs and micro-controllers). During the mandatory residential school you will attain, in a team, hands-on skills in automation circuit design experiencing several laboratory experiments in areas of hydraulic and pneumatic operating system design and control circuit design integrated with PLCs for automated machines. Simulation systems like SimScape and FluidSim may be applied for confirming the functionality of your designed projects. You will communicate professionally using discipline-specific terminology to present designs and problem solutions accomplishing a Student Portfolio. Relevant problem solving, technical reports on projects and laboratory experiments are the formative assessment items during the Term. Online students are required to have access to a computer and internet to make frequent use of the Unit Moodle.

Details

Career Level: Undergraduate
Unit Level: Level 2
Credit Points: 6
Student Contribution Band: 8
Fraction of Full-Time Student Load: 0.125

Pre-requisites or Co-requisites

Prereq: ENAG11002 Energy & Electricity or ENEG11009 Fundamentals of Energy & Electricity or PHYS11185 Engineering Physics B

Important note: Students enrolled in a subsequent unit who failed their pre-requisite unit, should drop the subsequent unit before the census date or within 10 working days of Fail grade notification. Students who do not drop the unit in this timeframe cannot later drop the unit without academic and financial liability. See details in the Assessment Policy and Procedure (Higher Education Coursework).

Offerings For Term 1 - 2023

Mixed Mode

Attendance Requirements

All on-campus students are expected to attend scheduled classes – in some units, these classes are identified as a mandatory (pass/fail) component and attendance is compulsory. International students, on a student visa, must maintain a full time study load and meet both attendance and academic progress requirements in each study period (satisfactory attendance for International students is defined as maintaining at least an 80% attendance record).

Residential Schools

This unit has a Compulsory Residential School for distance mode students and the details are:
Click here to see your Residential School Timetable.

Class and Assessment Overview

Recommended Student Time Commitment

Each 6-credit Undergraduate unit at CQUniversity requires an overall time commitment of an average of 12.5 hours of study per week, making a total of 150 hours for the unit.

Class Timetable

Bundaberg, Cairns, Emerald, Gladstone, Mackay, Rockhampton, Townsville
Adelaide, Brisbane, Melbourne, Perth, Sydney

Assessment Overview

1. Written Assessment
Weighting: 30%
2. Written Assessment
Weighting: 40%
3. Laboratory/Practical
Weighting: 30%
4. Written Assessment
Weighting: Pass/Fail

Assessment Grading

This is a graded unit: your overall grade will be calculated from the marks or grades for each assessment task, based on the relative weightings shown in the table above. You must obtain an overall mark for the unit of at least 50%, or an overall grade of ‘pass’ in order to pass the unit. If any ‘pass/fail’ tasks are shown in the table above they must also be completed successfully (‘pass’ grade). You must also meet any minimum mark requirements specified for a particular assessment task, as detailed in the ‘assessment task’ section (note that in some instances, the minimum mark for a task may be greater than 50%). Consult the University’s Grades and Results Policy for more details of interim results and final grades.

Previous Student Feedback

Feedback, Recommendations and Responses

Every unit is reviewed for enhancement each year. At the most recent review, the following staff and student feedback items were identified and recommendations were made.

Feedback from Evaluation feedback

Feedback

More organised, on weekly basis, learning materials in the Moodle site.

Recommendation

Suggested to organise and sort out, more appropriately making easy-accessible, all learning and assessment materials at the beginning of the term.

Feedback from UC reflection and students' wish

Feedback

Sourcing and using automation industry simulation software (free for students) to test their designed fluid circuit prior to lab experiments.

Recommendation

Recommended continuing sourcing fluid circuit simulation software (complimentary) from prominent industrial automation companies assisting students to use it for their tutorial and lab experiments.

Unit Learning Outcomes
On successful completion of this unit, you will be able to:
  1. Explain and analyse the design and working principles of fluid power system elements
  2. Select appropriate sizes of fluid power components to achieve functional objectives of fluid machineries
  3. Design suitable pressure control to protect circuit components and to minimise energy loss for sustainability
  4. Design and draw simple pneumatic/hydraulic circuits for automation of machine systems
  5. Work, learn and communicate in an ethical, professional manner individually and collaboratively, using information literacy skills to investigate problems and present solutions.

The Learning Outcomes for this unit are linked with the Engineers Australia Stage 1 Competency Standards for Engineering Associates in the areas of 1. Knowledge and Skill Base, 2. Engineering Application Ability and 3. Professional and Personal Attributes at the following levels:

Introductory
2.4 Application of systematic project management processes. (LO: 3N)
Intermediate
1.1 Descriptive, formula-based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the practice area. (LO: 1I 3I)
1.2 Procedural-level understanding of the mathematics, numerical analysis, statistics, and computer and information sciences which underpin the practice area. (LO: 2I 3I)
2.2 Application of technical and practical techniques, tools and resources to well-defined engineering problems. (LO: 1N 2I 4I)
3.2 Effective oral and written communication in professional and lay domains. (LO: 1N 2I 4I 5I)
3.5 Orderly management of self, and professional conduct. (LO: 1I 2I 3I 4I)
Advanced
1.3 In-depth practical knowledge and skills within specialist sub-disciplines of the practice area. (LO: 1I 2A 3I 4A)
1.4 Discernment of engineering developments within the practice area. (LO: 1A 2A 3A 4A)
1.5 Knowledge of engineering design practice and contextual factors impacting the practice area. (LO: 1I 3A 4I)
1.6 Understanding of the scope, principles, norms, accountabilities and bounds of sustainable engineering practice in the area of practice. (LO: 2I 3I 4A 5N)
2.1 Application of established technical and practical methods to the solution of well-defined engineering problems. (LO: 1I 3A)
2.3 Application of systematic design processes to well-defined engineering problems. (LO: 2A 3A 4A)
3.1 Ethical conduct and professional accountability. (LO: 2N 3N 4A 5I)
3.3 Creative, innovative and pro-active demeanour. (LO: 1I 2A 3A 4A 5I)
3.4 Professional use and management of information. (LO: 3A 4A 5N)

Note: LO refers to the Learning Outcome number(s) which link to the competency and the levels: N – Introductory, I – Intermediate and A - Advanced.
Refer to the Engineering Undergraduate Course Moodle site for further information on the Engineers Australia's Stage 1 Competency Standard for Professional Engineers and course level mapping information https://moodle.cqu.edu.au/course/view.php?id=1511

Alignment of Learning Outcomes, Assessment and Graduate Attributes
N/A Level
Introductory Level
Intermediate Level
Graduate Level
Professional Level
Advanced Level

Alignment of Assessment Tasks to Learning Outcomes

Assessment Tasks Learning Outcomes
1 2 3 4 5
1 - Written Assessment - 30%
2 - Written Assessment - 40%
3 - Laboratory/Practical - 30%
4 - Written Assessment - 0%

Alignment of Graduate Attributes to Learning Outcomes

Graduate Attributes Learning Outcomes
1 2 3 4 5
1 - Communication
2 - Problem Solving
3 - Critical Thinking
4 - Information Literacy
5 - Team Work
6 - Information Technology Competence
7 - Cross Cultural Competence
8 - Ethical practice
9 - Social Innovation
10 - Aboriginal and Torres Strait Islander Cultures
Textbooks and Resources

Textbooks

Prescribed

Introduction to Fluid Power

1st edition
Authors: James L. Johnson
Cengage Learning
Florence Florence , KY , USA
ISBN: 9780766823655
Binding: Paperback

Additional Textbook Information

Textbooks can be accessed online at the CQUniversity Library website. If you prefer your own copy, you can purchase either paper or eBook versions at the CQUni Bookshop here: http://bookshop.cqu.edu.au (search on the Unit code)

IT Resources

You will need access to the following IT resources:
  • CQUniversity Student Email
  • Internet
  • Unit Website (Moodle)
  • Hardware to access audio-visual clips
Academic Integrity Statement

As a CQUniversity student you are expected to act honestly in all aspects of your academic work.

Any assessable work undertaken or submitted for review or assessment must be your own work. Assessable work is any type of work you do to meet the assessment requirements in the unit, including draft work submitted for review and feedback and final work to be assessed.

When you use the ideas, words or data of others in your assessment, you must thoroughly and clearly acknowledge the source of this information by using the correct referencing style for your unit. Using others’ work without proper acknowledgement may be considered a form of intellectual dishonesty.

Participating honestly, respectfully, responsibly, and fairly in your university study ensures the CQUniversity qualification you earn will be valued as a true indication of your individual academic achievement and will continue to receive the respect and recognition it deserves.

As a student, you are responsible for reading and following CQUniversity’s policies, including the Student Academic Integrity Policy and Procedure. This policy sets out CQUniversity’s expectations of you to act with integrity, examples of academic integrity breaches to avoid, the processes used to address alleged breaches of academic integrity, and potential penalties.

What is a breach of academic integrity?

A breach of academic integrity includes but is not limited to plagiarism, self-plagiarism, collusion, cheating, contract cheating, and academic misconduct. The Student Academic Integrity Policy and Procedure defines what these terms mean and gives examples.

Why is academic integrity important?

A breach of academic integrity may result in one or more penalties, including suspension or even expulsion from the University. It can also have negative implications for student visas and future enrolment at CQUniversity or elsewhere. Students who engage in contract cheating also risk being blackmailed by contract cheating services.

Where can I get assistance?

For academic advice and guidance, the Academic Learning Centre (ALC) can support you in becoming confident in completing assessments with integrity and of high standard.

What can you do to act with integrity?