

Profile information current as at 09/05/2024 05:41 am

All details in this unit profile for MATH11218 have been officially approved by CQUniversity and represent a learning partnership between the University and you (our student). The information will not be changed unless absolutely necessary and any change will be clearly indicated by an approved correction included in the profile.

General Information

Overview

In this unit, you will study fundamental mathematical concepts, processes and techniques that are necessary to support subsequent studies in applied calculus. You will investigate the properties and applications of linear, quadratic, logarithmic and exponential functions. You will use trigonometry to solve triangles and trigonometric functions to model periodic phenomena. Complex numbers, vectors and matrix algebra will be used to develop solutions to problems. You will apply the concepts of elementary statistics to analyse data and introductory probability theory to predict the likelihood of occurrence of an event. Other important elements of this unit are the communication of results, concepts and ideas using mathematics as a language. Through the use of mathematical software you will visualise, analyse, validate and solve problems.

Details

Career Level: Undergraduate

Unit Level: Level 1 Credit Points: 6

Student Contribution Band: 7

Fraction of Full-Time Student Load: 0.125

Pre-requisites or Co-requisites

Anti-requisite: MATH12223 or MATH12224

Important note: Students enrolled in a subsequent unit who failed their pre-requisite unit, should drop the subsequent unit before the census date or within 10 working days of Fail grade notification. Students who do not drop the unit in this timeframe cannot later drop the unit without academic and financial liability. See details in the Assessment Policy and Procedure (Higher Education Coursework).

Offerings For Term 2 - 2019

- Bundaberg
- Cairns
- Gladstone
- Mackay
- Online
- Rockhampton

Attendance Requirements

All on-campus students are expected to attend scheduled classes – in some units, these classes are identified as a mandatory (pass/fail) component and attendance is compulsory. International students, on a student visa, must maintain a full time study load and meet both attendance and academic progress requirements in each study period (satisfactory attendance for International students is defined as maintaining at least an 80% attendance record).

Website

This unit has a website, within the Moodle system, which is available two weeks before the start of term. It is important that you visit your Moodle site throughout the term. Please visit Moodle for more information.

Class and Assessment Overview

Recommended Student Time Commitment

Each 6-credit Undergraduate unit at CQUniversity requires an overall time commitment of an average of 12.5 hours of study per week, making a total of 150 hours for the unit.

Class Timetable

Regional Campuses

Bundaberg, Cairns, Emerald, Gladstone, Mackay, Rockhampton, Townsville

Metropolitan Campuses

Adelaide, Brisbane, Melbourne, Perth, Sydney

Assessment Overview

1. Written Assessment

Weighting: 20%

2. Written Assessment

Weighting: 20% 3. **Examination** Weighting: 60%

Assessment Grading

This is a graded unit: your overall grade will be calculated from the marks or grades for each assessment task, based on the relative weightings shown in the table above. You must obtain an overall mark for the unit of at least 50%, or an overall grade of 'pass' in order to pass the unit. If any 'pass/fail' tasks are shown in the table above they must also be completed successfully ('pass' grade). You must also meet any minimum mark requirements specified for a particular assessment task, as detailed in the 'assessment task' section (note that in some instances, the minimum mark for a task may be greater than 50%). Consult the <u>University's Grades and Results Policy</u> for more details of interim results and final grades.

CQUniversity Policies

All University policies are available on the CQUniversity Policy site.

You may wish to view these policies:

- Grades and Results Policy
- Assessment Policy and Procedure (Higher Education Coursework)
- Review of Grade Procedure
- Student Academic Integrity Policy and Procedure
- Monitoring Academic Progress (MAP) Policy and Procedure Domestic Students
- Monitoring Academic Progress (MAP) Policy and Procedure International Students
- Student Refund and Credit Balance Policy and Procedure
- Student Feedback Compliments and Complaints Policy and Procedure
- Information and Communications Technology Acceptable Use Policy and Procedure

This list is not an exhaustive list of all University policies. The full list of University policies are available on the CQUniversity Policy site.

Previous Student Feedback

Feedback, Recommendations and Responses

Every unit is reviewed for enhancement each year. At the most recent review, the following staff and student feedback items were identified and recommendations were made.

Feedback from Unit coordinator reflection

Feedback

Students need to maintain ethical practice in assignment preparation.

Recommendation

Continue to reinforce to students the need for ethical practice in all aspects of study.

Feedback from Unit evaluation

Feedback

Students commented very favourably on the unit being interesting, the ease of learning due to quality lectures and tutorial materials and recognised the expertise of the teaching staff.

Recommendation

Continue to foster the current learning and teaching environment.

Unit Learning Outcomes

On successful completion of this unit, you will be able to:

- 1. Solve problems by applying the properties of linear, quadratic, logarithmic and exponential functions
- 2. Model periodic phenomena using trigonometric functions and apply trigonometry to solve triangles
- 3. Use complex numbers, vectors and matrix algebra to develop solutions to problems
- 4. Apply the concepts of elementary statistics to analyse data and introductory probability theory to predict the likelihood of occurrence of an event
- 5. Communicate results, concepts and ideas in context using mathematics as a language
- 6. Apply mathematical software to visualise, analyse, validate and solve problems.

Alignment of Learning Outcomes, Assessment and Graduate Attributes

			1				1				
_	N/A Level	•	Introductory Level	•	Intermediate Level	•	Graduate Level	0	Professional Level	0	Advanced Level

Alignment of Assessment Tasks to Learning Outcomes

Assessment Tasks	Learn	Learning Outcomes								
	1	2	3	4	5	6				
1 - Written Assessment - 20%	•				•	•				
2 - Written Assessment - 20%		•	•		•	•				
3 - Examination - 60%	•	•	•	•						

Alignment of Graduate Attributes to Learning Outcomes

Graduate Attributes					Learning Outcomes						
					1	2	3	4	5	6	
1 - Communication					•	•	•	•	•	•	
2 - Problem Solving							•	•	•	•	
3 - Critical Thinking					•	•	•	•	•	•	
4 - Information Literacy						•	•	•	•	•	
5 - Team Work											
6 - Information Technology Competence					•	•	•	•	•	•	
7 - Cross Cultural Competence						•	•	•	•		
8 - Ethical practice						•	•	•	•	•	
9 - Social Innovation											
10 - Aboriginal and Torres Strait Islander Cultures											
Alignment of Assessment Tasks to Graduate Attributes											
Assessment Tasks	Gra	aduat	e Ati	tribu	tes						
	1	2	3	4	5	6	7	8	9	10	
1 - Written Assessment - 20%	٠	•				•		•			
2 - Written Assessment - 20%	•	•				•		•			
3 - Examination - 60%	•	•				•		•			

Textbooks and Resources

Textbooks

MATH11218

Prescribed

Engineering Mathematics

5th edition (2017)

Authors: Croft, Davison, Flint & Hargeaves

Pearson

Harlow , Essex , UK ISBN: 9781292146652 Binding: Paperback

Additional Textbook Information

Copies are available to purchase at the CQUni Bookshop here: http://bookshop.cqu.edu.au (search on the Unit code)

View textbooks at the CQUniversity Bookshop

IT Resources

You will need access to the following IT resources:

- CQUniversity Student Email
- Internet
- Unit Website (Moodle)
- Access to a digital camera (for participating in Zoom Videoconferencing link up: Lecturers and Tutorials)
- Access to a speaker and microphone or a headset (for participating in Zoom Videoconferencing link up: Lecturers and Tutorials)
- · Access to a document scanner and/or pdf converter (all assessment submitted electronically as pdf file)

Referencing Style

All submissions for this unit must use the referencing style: <u>Harvard (author-date)</u> For further information, see the Assessment Tasks.

Teaching Contacts

Patrick Keleher Unit Coordinator

p.keleher@cqu.edu.au

Schedule

Week 1 - 15 Jul 2019									
Module/Topic	Chapter	Events and Submissions/Topic							
Textbook Sections 1.1, 1.2,1.4 to 1.5	Chapter 1: Review of algebraic techniques	Textbook Exercises 1.2, 1.4 to 1.5 and Week 1 Tutorial Exercises							
Week 2 - 22 Jul 2019									
Module/Topic	Chapter	Events and Submissions/Topic							
Textbook Sections 1.6 to 1.8	Chapter 1: Review of algebraic techniques	Textbook Exercises 1.6 to 1.8 and Week 2 Tutorial Exercises							
Week 3 - 29 Jul 2019									
Module/Topic	Chapter	Events and Submissions/Topic							

Textbook Sections 2.1 to 2.3, 2.4.1, 2.4.2, 2.4.6 to 2.4.9	Chapter 2: Engineering functions	Textbook Exercises 2.3, 2.4.1, 2.4.2, 2.4.6, 2.4.8, 2.4.9 and Week 3 Tutorial Exercises						
Week 4 - 05 Aug 2019								
Module/Topic	Chapter	Events and Submissions/Topic						
Textbook Sections 2.4.3 to 2.4.5	Chapter 2: Engineering functions	Textbook Exercises 2.4.3, 2.4.4, 2.4.5 and Week 4 Tutorial Exercises						
Week 5 - 12 Aug 2019								
Module/Topic	Chapter	Events and Submissions/Topic						
Textbook Sections 3.1 to 3.8	Chapter 3: The trigonometric	Textbook Exercises 3.3, 3.4, 3.6 to 3.8 and Week 5 Tutorial Exercises						
TEXEBOOK SECTIONS 3.1 to 3.0	functions	Assignment 1 Due: Week 5 Friday (16 Aug 2019) 5:00 pm AEST						
Vacation Week - 19 Aug 2019								
Module/Topic	Chapter	Events and Submissions/Topic						
Wook 6 26 Ave 2010								
Week 6 - 26 Aug 2019	Chanter	Events and Submissions/Tenis						
Module/Topic	Chapter	Events and Submissions/Topic						
Textbook Sections 4.1 to 4.4, 7.1 to 7.7	Chapter 4: Coordinate systems, and Chapter 7: Vectors	Textbook Exercises 4.2 to 4.4, 7.2, 7.3, 7.5 to 7.7 and Week 6 Tutorial Exercises						
Week 7 - 02 Sep 2019								
Module/Topic	Chapter	Events and Submissions/Topic						
Textbook Sections 9.1 to 9.9	Chapter 9: Complex numbers	Textbook Exercises 9.2 to 9.5, 9.7, 9.9 and Week 7 Tutorial Exercises						
Week 8 - 09 Sep 2019								
Module/Topic	Chapter	Events and Submissions/Topic						
Textbook Sections 8.1 to 8.8	Chapter 8: Matrix algebra	Textbook Exercises 8.3, 8.5, 8.6, 8.7, 8.8 and Week 8 Tutorial Exercises						
Week 9 - 16 Sep 2019								
Module/Topic	Chapter	Events and Submissions/Topic Textbook Exercises 8.9 to 8.11, 8.13 and Week 9 Tutorial Exercises						
Textbook Sections 8.9 to 8.13	Chapter 8: Matrix algebra	Assignment 2 Due: Week 9 Friday (20 Sept 2019) 5:00 pm AEST						
Week 10 - 23 Sep 2019								
Module/Topic	Chapter	Events and Submissions/Topic						
Textbook Sections 28.1 to 28.4, 28.6 to 28.7, 29.1 to 29.5	Chapter 28: Probability, and Chapter 29: Statistics and probability distributions	Textbook Exercises 28.2 to 28.4, 28.6-28.7, 29.2, 29.3, 29.5 and Week 10 Tutorial Exercises						
Week 11 - 30 Sep 2019								
Module/Topic	Chapter	Events and Submissions/Topic						
Textbook Sections 29.6 to 29.15	Chapter 29: Statistics and probability distributions	Textbook Exercises 29.6 to 29.15 and Week 11 Tutorial Exercises						
Week 12 - 07 Oct 2019								
Module/Topic	Chapter	Events and Submissions/Topic						
Revision		Revision and Week 12 Tutorial Exercises						
Review/Exam Week - 14 Oct 2019								

Module/Topic	Chapter	Events and Submissions/Topic
Exam Week - 21 Oct 2019		
Module/Topic	Chapter	Events and Submissions/Topic

Assessment Tasks

1 Assignment 1

Assessment Type

Written Assessment

Task Description

Please see the unit Moodle site for the questions in this assignment. Questions are from the unit content covered in Weeks 1-4. Assignment 1 will be available for download under the "Assessment" block on the unit Moodle site, together with complete instructions for online submission of your solutions to the assignment questions. Marks will be deducted for assignments which are submitted late without prior permission or adequate explanation. Assignments will receive NO marks if submitted after the solutions are released (2 weeks after the assignment submission date) but will still be counted as submitted.

Assessment Due Date

Week 5 Friday (16 Aug 2019) 5:00 pm AEST

Extensions: Solutions to this assignment will be made available to students 2 weeks after the due date. Consequently, extension requests greater than 14 days will be denied except under exceptional circumstances.

Return Date to Students

Week 7 Friday (6 Sept 2019)

Extensions: Solutions to this assignment will be made available to students 2 weeks after the due date. Consequently, extension requests greater than 14 days will be denied except under exceptional circumstances.

Weighting

20%

Assessment Criteria

Questions are from unit content covered in Weeks 1-4. Questions are awarded full marks if they are error-free, partial marks if there are some errors, and no marks if not attempted or contain so many errors as to render the attempt to be without value. The final Assignment 1 mark is scaled to an assessment weighting out of 20%. Answers to all questions should be neatly and clearly presented. Full working is required to obtain maximum credit for solutions.

Referencing Style

• Harvard (author-date)

Submission

Online

Submission Instructions

Assignment 1 is uploaded as a single document at the unit Moodle site for MATH11218. Full details are provided on the unit Moodle site.

Learning Outcomes Assessed

- Solve problems by applying the properties of linear, quadratic, logarithmic and exponential functions
- Communicate results, concepts and ideas in context using mathematics as a language
- Apply mathematical software to visualise, analyse, validate and solve problems.

Graduate Attributes

- Communication
- Problem Solving
- Information Technology Competence
- Ethical practice

2 Assignment 2

Assessment Type

Written Assessment

Task Description

Please see the unit Moodle site for the questions in this assignment. Questions are from the unit content covered in Weeks 5-8. Assignment 2 will be available for download under the "Assessment" block on the unit Moodle website, together with complete instructions for online submission of your solutions to the assignment questions.

Marks will be deducted for assignments which are submitted late without prior permission or adequate explanation. Assignments will receive NO marks if submitted after the solutions are released (2 weeks after the assignment submission date) but will still be counted as submitted.

Assessment Due Date

Week 9 Friday (20 Sept 2019) 5:00 pm AEST

Extensions: Solutions to this assignment will be made available to students 2 weeks after the due date. Consequently, extension requests greater than 14 days will be denied except under exceptional circumstances.

Return Date to Students

Week 11 Friday (4 Oct 2019)

Extensions: Solutions to this assignment will be made available to students 2 weeks after the due date. Consequently, extension requests greater than 14 days will be denied except under exceptional circumstances.

Weighting

20%

Assessment Criteria

Questions are from unit content covered in Weeks 5-8. Questions are awarded full marks if they are error-free, partial marks if there are some errors, and no marks if not attempted or contain so many errors as to render the attempt to be without value. The final Assignment 2 mark is scaled to an assessment weighting out of 20%. Answers to all questions should be neatly and clearly presented. Full working is required to obtain maximum credit for solutions.

Referencing Style

• Harvard (author-date)

Submission

Online

Submission Instructions

Assignment 2 is uploaded as a single document at the unit Moodle site for MATH11218. Full details are provided on the unit Moodle site.

Learning Outcomes Assessed

- Model periodic phenomena using trigonometric functions and apply trigonometry to solve triangles
- Use complex numbers, vectors and matrix algebra to develop solutions to problems
- Communicate results, concepts and ideas in context using mathematics as a language
- Apply mathematical software to visualise, analyse, validate and solve problems.

Graduate Attributes

- Communication
- Problem Solving
- Information Technology Competence
- Ethical practice

Examination

Outline

Complete an invigilated examination.

Date

During the examination period at a CQUniversity examination centre.

Weighting

60%

Length

180 minutes

Minimum mark or grade

Students must score a minimum of 50% of the marks available on the final examination.

Exam Conditions

Open Book.

Materials

Dictionary - non-electronic, concise, direct translation only (dictionary must not contain any notes or comments). Calculator - all non-communicable calculators, including scientific, programmable and graphics calculators are authorised

Academic Integrity Statement

As a CQUniversity student you are expected to act honestly in all aspects of your academic work.

Any assessable work undertaken or submitted for review or assessment must be your own work. Assessable work is any type of work you do to meet the assessment requirements in the unit, including draft work submitted for review and feedback and final work to be assessed.

When you use the ideas, words or data of others in your assessment, you must thoroughly and clearly acknowledge the source of this information by using the correct referencing style for your unit. Using others' work without proper acknowledgement may be considered a form of intellectual dishonesty.

Participating honestly, respectfully, responsibly, and fairly in your university study ensures the CQUniversity qualification you earn will be valued as a true indication of your individual academic achievement and will continue to receive the respect and recognition it deserves.

As a student, you are responsible for reading and following CQUniversity's policies, including the **Student Academic Integrity Policy and Procedure**. This policy sets out CQUniversity's expectations of you to act with integrity, examples of academic integrity breaches to avoid, the processes used to address alleged breaches of academic integrity, and potential penalties.

What is a breach of academic integrity?

A breach of academic integrity includes but is not limited to plagiarism, self-plagiarism, collusion, cheating, contract cheating, and academic misconduct. The Student Academic Integrity Policy and Procedure defines what these terms mean and gives examples.

Why is academic integrity important?

A breach of academic integrity may result in one or more penalties, including suspension or even expulsion from the University. It can also have negative implications for student visas and future enrolment at CQUniversity or elsewhere. Students who engage in contract cheating also risk being blackmailed by contract cheating services.

Where can I get assistance?

For academic advice and guidance, the <u>Academic Learning Centre (ALC)</u> can support you in becoming confident in completing assessments with integrity and of high standard.

What can you do to act with integrity?

Be Honest

If your assessment task is done by someone else, it would be dishonest of you to claim it as your own

Seek Help

If you are not sure about how to cite or reference in essays, reports etc, then seek help from your lecturer, the library or the Academic Learning Centre (ALC)

Produce Original Work

Originality comes from your ability to read widely, think critically, and apply your gained knowledge to address a question or problem