In Progress
Please note that this Unit Profile is still in progress. The content below is subject to change.The information will not be changed unless absolutely necessary and any change will be clearly indicated by an approved correction included in the profile.
Overview
In this unit, you will apply the essential calculus concepts, processes, and techniques to develop mathematical models for science and engineering problems. Throughout the term, you will record handwritten worked examples of all problems attempted in a workbook to create a comprehensive resource for solving mathematical problems, which you can apply in the exam and throughout your course and career. You will use the Fundamental Theorem of Calculus to illustrate the relationship between a function's derivative and integral. The theorem will also be applied to problems involving definite integrals. Differential calculus will be used to construct mathematical models that investigate various rate-of-change and optimisation problems. You will learn how to apply the standard rules and techniques of integration. Science and engineering disciplinary problems will be explored through the use of differential equations. Other essential elements of this unit are communicating results, concepts, and ideas using mathematics as a language. Mathematical software will also be used to visualise, analyse, validate, and solve problems studied in the unit.
Details
Pre-requisites or Co-requisites
Prerequisite: MATH11218 Anti-requisite: MATH12223 or MATH12224
Important note: Students enrolled in a subsequent unit who failed their pre-requisite unit, should drop the subsequent unit before the census date or within 10 working days of Fail grade notification. Students who do not drop the unit in this timeframe cannot later drop the unit without academic and financial liability. See details in the Assessment Policy and Procedure (Higher Education Coursework).
Offerings For Term 2 - 2023
Attendance Requirements
All on-campus students are expected to attend scheduled classes – in some units, these classes are identified as a mandatory (pass/fail) component and attendance is compulsory. International students, on a student visa, must maintain a full time study load and meet both attendance and academic progress requirements in each study period (satisfactory attendance for International students is defined as maintaining at least an 80% attendance record).
Recommended Student Time Commitment
Each 6-credit Undergraduate unit at CQUniversity requires an overall time commitment of an average of 12.5 hours of study per week, making a total of 150 hours for the unit.
Class Timetable
Assessment Overview
Assessment Grading
This is a pass/fail (non-graded) unit. To pass the unit, you must pass all of the individual assessment tasks shown in the table above.
All University policies are available on the CQUniversity Policy site.
You may wish to view these policies:
- Grades and Results Policy
- Assessment Policy and Procedure (Higher Education Coursework)
- Review of Grade Procedure
- Student Academic Integrity Policy and Procedure
- Monitoring Academic Progress (MAP) Policy and Procedure – Domestic Students
- Monitoring Academic Progress (MAP) Policy and Procedure – International Students
- Student Refund and Credit Balance Policy and Procedure
- Student Feedback – Compliments and Complaints Policy and Procedure
- Information and Communications Technology Acceptable Use Policy and Procedure
This list is not an exhaustive list of all University policies. The full list of University policies are available on the CQUniversity Policy site.
Feedback, Recommendations and Responses
Every unit is reviewed for enhancement each year. At the most recent review, the following staff and student feedback items were identified and recommendations were made.
Feedback from 2021 Engineering Curriculum Review.
Strategically optimise the unit topics taught.
Update the lectures and tutorials to match the revised unit curriculum.
Feedback from Student Unit and Teaching Evaluation (SUTE).
Positive student feedback was received that the unit was well structured, had lots of resources and provided a good pace for learning with supportive and engaged staff.
Continue to offer a positive learning experience.
- Interpret the derivative as a rate of change to apply the rules of differentiation in investigating rates of change of functions
- Construct mathematical models to investigate optimisation problems using differential calculus
- Carry out the process of integration as the inverse operation of differentiation
- Apply standard rules and techniques of integration to construct and analyse simple mathematical models involving rates of change and elementary differential equations
- Use the Fundamental Theorem of Calculus to illustrate the relationship between the derivative and the integral of a function and apply the theorem to problems involving definite integrals
- Communicate results, concepts, and ideas in context using mathematics as a language
- Use mathematical software to visualise, analyse, validate and solve problems.
The Learning Outcomes for this unit are linked with the Engineers Australia Stage 1 Competency Standards for Professional Engineers in the areas of 1. Knowledge and Skill Base, 2. Engineering Application Ability and 3. Professional and Personal Attributes at the following levels:
Introductory
Refer to the Engineering Undergraduate Course Moodle site for further information on Engineers Australia's Stage 1 Competency Standard for Professional Engineers and course-level mapping information
Alignment of Assessment Tasks to Learning Outcomes
Assessment Tasks | Learning Outcomes | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
1 - Written Assessment - 0% | |||||||
2 - Online Quiz(zes) - 0% | |||||||
3 - Examination - 0% |
Alignment of Graduate Attributes to Learning Outcomes
Graduate Attributes | Learning Outcomes | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
1 - Communication | |||||||
2 - Problem Solving | |||||||
3 - Critical Thinking | |||||||
4 - Information Literacy | |||||||
5 - Team Work | |||||||
6 - Information Technology Competence | |||||||
7 - Cross Cultural Competence | |||||||
8 - Ethical practice | |||||||
9 - Social Innovation | |||||||
10 - Aboriginal and Torres Strait Islander Cultures |
Textbooks
Engineering Mathematics: A Foundation for Electronic, Electrical, Communications and Systems Engineers
Fifth Edition (2017)
Authors: Anthony Croft, Robert Davison, Martin Hargreaves and James Flint
Pearson
Harlow Harlow , England
ISBN: 978-1-292-14665-2
Binding: Paperback
ESSENTIALS AND EXAMPLES OF APPLIED MATHEMATICS
Edition: 2nd edn (2020)
Authors: William Guo
Pearson Australia
Melbourne Melbourne , VIC , Australia
ISBN: 9780655703624
Binding: Paperback