

Profile information current as at 14/05/2024 12:28 am

All details in this unit profile for MATH12225 have been officially approved by CQUniversity and represent a learning partnership between the University and you (our student). The information will not be changed unless absolutely necessary and any change will be clearly indicated by an approved correction included in the profile.

General Information

Overview

Applied Computational Modelling will further your understanding of and ability in mathematical modelling of scientific and engineering problems. You will use built-in MATLAB functions to solve general problems in various disciplines. You will also learn to program in MATLAB to obtain solutions to complex problems, through both analytical and numerical approaches. This unit will teach you to approach problems in a way that demonstrates a clear, logical and systematic procedure of modelling through integrating mathematical and programming knowledge and techniques. You will also learn how to document problems and findings. Coursework leads you to approaching posed problems in a way that demonstrates a clear, logical and systematic procedure of modelling through integrating mathematical and programming knowledge and techniques learnt.

Details

Career Level: Undergraduate

Unit Level: Level 2 Credit Points: 6

Student Contribution Band: 7

Fraction of Full-Time Student Load: 0.125

Pre-requisites or Co-requisites

Pre-requisite: MATH12222 or MATH13218

Important note: Students enrolled in a subsequent unit who failed their pre-requisite unit, should drop the subsequent unit before the census date or within 10 working days of Fail grade notification. Students who do not drop the unit in this timeframe cannot later drop the unit without academic and financial liability. See details in the Assessment Policy and Procedure (Higher Education Coursework).

Offerings For Term 2 - 2018

- Bundaberg
- Cairns
- Distance
- Gladstone
- Mackay
- Rockhampton

Attendance Requirements

All on-campus students are expected to attend scheduled classes – in some units, these classes are identified as a mandatory (pass/fail) component and attendance is compulsory. International students, on a student visa, must maintain a full time study load and meet both attendance and academic progress requirements in each study period (satisfactory attendance for International students is defined as maintaining at least an 80% attendance record).

Website

This unit has a website, within the Moodle system, which is available two weeks before the start of term. It is important that you visit your Moodle site throughout the term. Please visit Moodle for more information.

Class and Assessment Overview

Recommended Student Time Commitment

Each 6-credit Undergraduate unit at CQUniversity requires an overall time commitment of an average of 12.5 hours of study per week, making a total of 150 hours for the unit.

Class Timetable

Regional Campuses

Bundaberg, Cairns, Emerald, Gladstone, Mackay, Rockhampton, Townsville

Metropolitan Campuses

Adelaide, Brisbane, Melbourne, Perth, Sydney

Assessment Overview

1. Written Assessment

Weighting: 20%

2. Written Assessment

Weighting: 20%

3. Written Assessment

Weighting: 30% 4. **Examination** Weighting: 30%

Assessment Grading

This is a graded unit: your overall grade will be calculated from the marks or grades for each assessment task, based on the relative weightings shown in the table above. You must obtain an overall mark for the unit of at least 50%, or an overall grade of 'pass' in order to pass the unit. If any 'pass/fail' tasks are shown in the table above they must also be completed successfully ('pass' grade). You must also meet any minimum mark requirements specified for a particular assessment task, as detailed in the 'assessment task' section (note that in some instances, the minimum mark for a task may be greater than 50%). Consult the <u>University's Grades and Results Policy</u> for more details of interim results and final grades.

CQUniversity Policies

All University policies are available on the CQUniversity Policy site.

You may wish to view these policies:

- Grades and Results Policy
- Assessment Policy and Procedure (Higher Education Coursework)
- Review of Grade Procedure
- Student Academic Integrity Policy and Procedure
- Monitoring Academic Progress (MAP) Policy and Procedure Domestic Students
- Monitoring Academic Progress (MAP) Policy and Procedure International Students
- Student Refund and Credit Balance Policy and Procedure
- Student Feedback Compliments and Complaints Policy and Procedure
- Information and Communications Technology Acceptable Use Policy and Procedure

This list is not an exhaustive list of all University policies. The full list of University policies are available on the CQUniversity Policy site.

Previous Student Feedback

Feedback, Recommendations and Responses

Every unit is reviewed for enhancement each year. At the most recent review, the following staff and student feedback items were identified and recommendations were made.

Feedback from Student feedback

Feedback

Students were happy with: easy-to-understand resources, the live online tutorial, assistance from the lecturer, the design of assignment, and quick feedback of assignment results.

Recommendation

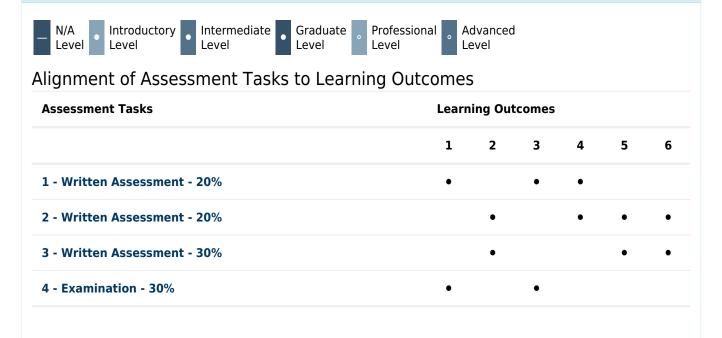
Continue to offer a positive supported learning experience.

Feedback from Course coordinator reflection

Feedback

Provide additional learning materials to support student learning.

Recommendation


Continue to develop/source additional supporting materials for the unit.

Unit Learning Outcomes

On successful completion of this unit, you will be able to:

- 1. Solve general problems in various disciplines using existing functions in MATLAB
- 2. Program in MATLAB to solve complicated problems
- 3. Manipulate and interpret input/output data utilising existing tools in MATLAB
- 4. Formulate and implement procedures of mathematical modelling for authentic situations where analytical solutions exist
- 5. Design and implement procedures of numeric modelling to develop useful solutions to complex applications
- 6. Document the solution to posed problems in a way that demonstrates a clear, logical and systematic procedure of modelling.

Alignment of Learning Outcomes, Assessment and Graduate Attributes

Graduate Attributes				Learning Outcomes						
					1	2	3	4	5	6
1 - Communication										•
2 - Problem Solving					•	•	•	•	•	•
3 - Critical Thinking						•	•	•	•	•
4 - Information Literacy					•	•	•	•	•	•
5 - Team Work										•
6 - Information Technology Competence					•	•	•	•	•	•
7 - Cross Cultural Competence										•
8 - Ethical practice										•
9 - Social Innovation										
10 - Aboriginal and Torres Strait Islander Culture	5									
Alignment of Assessment Tasks to Gra	duate Attr	ibut	es							
Assessment Tasks	nt Tasks Graduate Attributes									
	1	2	3	4	5	6	7	8	9	10
1 - Written Assessment - 20%		•		•		•				
2 - Written Assessment - 20%		•	•	•		•				
3 - Written Assessment - 30%	•	٠	•	•	•	•	•	•		

Textbooks and Resources

Textbooks

MATH12225

Prescribed

Applied computational modelling with MATLAB

Edition: 1st edn (2018)

Authors: Yucang Wang and William W. Guo,

Pearson Australia Sydney , NSW , Australia Binding: Paperback

Additional Textbook Information

View textbooks at the CQUniversity Bookshop

IT Resources

You will need access to the following IT resources:

- CQUniversity Student Email
- Internet
- Unit Website (Moodle)

Referencing Style

All submissions for this unit must use the referencing style: <u>Harvard (author-date)</u> For further information, see the Assessment Tasks.

Teaching Contacts

Yucang Wang Unit Coordinator

y.wang2@cqu.edu.au

Schedule

Week 1 - 09 Jul 2018		
Module/Topic	Chapter	Events and Submissions/Topic
MATLAB: getting started ; Basic types and operations in MATLAB; Built-in functions	Chapter 1 Introduction to MATLAB	Do questions in exercise 1 in Chapter 1
Week 2 - 16 Jul 2018		
Module/Topic	Chapter	Events and Submissions/Topic
Arrays, vectors and matrices and their basic operations	Chapter 2 Arrays, vectors and matrices	Do questions in exercise 2 in Chapter 2
Week 3 - 23 Jul 2018		
Module/Topic	Chapter	Events and Submissions/Topic
plotting and visualization; input/output in MATLAB ;	Chapter 3 Plotting and input/output in MATLAB	Do questions in exercise 3 in Chapter 3
Week 4 - 30 Jul 2018		
Module/Topic	Chapter	Events and Submissions/Topic

M-files and user-defined functions; Flow controls ;	Chapter 4 M-files, scripts, user-defined functions and flow controls	Do questions in exercise 4 in Chapter 4
Week 5 - 06 Aug 2018		
Module/Topic	Chapter	Events and Submissions/Topic
MATI AR implementations of linear and	Chanter 5 Curve fitting by the least	Do questions in exercise 5 in Chapter 5
MATLAB implementations of linear and quadratic fitting;	squares method	Written Assessment 1 Due: Week 5 Friday (10 Aug 2018) 11:00 pm AEST
Vacation Week - 13 Aug 2018		
Module/Topic	Chapter	Events and Submissions/Topic
Week 6 - 20 Aug 2018		
Module/Topic	Chapter	Events and Submissions/Topic
MATLAB implementations of Lagrange interpolation, Newton interpolation and cubic splines ;	Chapter 6 Interpolation with MATLAB	Do questions in exercise 6 in Chapter 6
Week 7 - 27 Aug 2018		
Module/Topic	Chapter	Events and Submissions/Topic
MATLAB implementations of Euler method, improved Euler method and Runge-Kutta method ;	Chapter 7 Numerical methods for solving ODEs	Do questions in exercise 7 in Chapter 7
Week 8 - 03 Sep 2018		
Module/Topic	Chapter	Events and Submissions/Topic
Interpolating data using MATLAB built- in functions; Curve fitting using MATLAB built-in functions; Solving differential equations using MATLAB built-in functions;	Chapter 8 Numerical methods using MATLAB built-in functions	Do questions in exercise 8 in Chapter 8
Week 9 - 10 Sep 2018		
Module/Topic	Chapter	Events and Submissions/Topic
Project one: Modelling of vibrations of a system with single degree of freedom using MATLAB;	Chapter 9 Modelling of mechanical vibrations using MATLAB	Do questions in exercise 9 in Chapter 9 Written Assessment 2 Due: Week 9
		Friday (14 Sept 2018) 11:00 pm AEST
Week 10 - 17 Sep 2018		
Module/Topic	Chapter	Events and Submissions/Topic
Project two: Modelling of RLC circuits using MATLAB;	Chapter 10 Modelling of RLC electrical circuits using MATLAB	Do questions in exercise 10 in Chapter 10
Week 11 - 24 Sep 2018		
Module/Topic	Chapter	Events and Submissions/Topic
Project three: Modelling of vibrations of a system with multiple degree of freedom using MATLAB;	Chapter 11 MATLAB modelling of mechanical vibrations with multiple degrees of freedom (MDOF)	Do questions in exercise 11 in Chapter 11
Week 12 - 01 Oct 2018		
Module/Topic	Chapter	Events and Submissions/Topic
Other applications of MATLAB in engineering mathematics; Hints for assignment 3;		Finish Assignment 3 and prepare for the final exam.
Reviews for the final exam.		Written Assessment 3 Due: Week 12 Friday (5 Oct 2018) 11:00 pm AEST

Review/Exam Week - 08 O	Oct 2018	
Module/Topic	Chapter	Events and Submissions/Topic
Exam Week - 15 Oct 2018		
Module/Topic	Chapter	Events and Submissions/Topic

Assessment Tasks

1 Written Assessment 1

Assessment Type

Written Assessment

Task Description

Questions on MATLAB fundamentals covered in Weeks 1-4. Please see the unit website for the questions in this assignment.

Assessment Due Date

Week 5 Friday (10 Aug 2018) 11:00 pm AEST

Return Date to Students

Week 7 Friday (31 Aug 2018)

Marked assignments are expected to be returned 2 weeks after the submission deadline.

Weighting

20%

Assessment Criteria

The final mark is out of 20. Questions are from contents covered in Weeks 1-4. Questions are awarded the full marks if they are error-free, partial marks if there are some problems, and no marks if not attempted or contain so many errors as to render the attempt to be without value. To ensure maximum benefit, answers to all questions should be neatly and clearly presented and all appropriate working should be shown.

Referencing Style

• Harvard (author-date)

Submission

Online

Learning Outcomes Assessed

- Solve general problems in various disciplines using existing functions in MATLAB
- Manipulate and interpret input/output data utilising existing tools in MATLAB
- Formulate and implement procedures of mathematical modelling for authentic situations where analytical solutions exist

Graduate Attributes

- Problem Solving
- Information Literacy
- Information Technology Competence

2 Written Assessment 2

Assessment Type

Written Assessment

Task Description

Questions on numeric methods using MATLAB covered in Weeks 4-8. Please see the unit website for the questions in this assignment.

Assessment Due Date

Week 9 Friday (14 Sept 2018) 11:00 pm AEST

Return Date to Students

Week 11 Friday (28 Sept 2018)

Marked assignments are expected to be returned 2 weeks after the submission deadline.

Weighting

20%

Assessment Criteria

The final mark is out of 20. Questions are from contents covered in Weeks 5-8. Questions are awarded the full marks if they are error-free, partial marks if there are some problems, and no marks if not attempted or contain so many errors as to render the attempt to be without value. To ensure maximum benefit, answers to all questions should be neatly and clearly presented and all appropriate working should be shown.

Referencing Style

• Harvard (author-date)

Submission

Online

Learning Outcomes Assessed

- Program in MATLAB to solve complicated problems
- Formulate and implement procedures of mathematical modelling for authentic situations where analytical solutions exist
- Design and implement procedures of numeric modelling to develop useful solutions to complex applications
- Document the solution to posed problems in a way that demonstrates a clear, logical and systematic procedure of modelling.

Graduate Attributes

- Problem Solving
- Critical Thinking
- Information Literacy
- Information Technology Competence

3 Written Assessment 3

Assessment Type

Written Assessment

Task Description

Assignment 3 is a group project for different disciplines based on lectures and tutorials during weeks 9-12. Each group needs to complete the assigned project using skills and knowledge gained from this unit and other units. Please see the unit website for the questions in this assignment.

Students can take one of three projects according to their specialties. This is a group work (up to 4 people in each group)

Assessment Due Date

Week 12 Friday (5 Oct 2018) 11:00 pm AEST

Return Date to Students

Review/Exam Week Friday (12 Oct 2018)

The marked projects will be returned to the students before the final exam

Weighting

30%

Assessment Criteria

Marks will be allocated based on project design, methods chosen and implied, process control, discussions and conclusions.

Referencing Style

• Harvard (author-date)

Submission

Online Group

Learning Outcomes Assessed

- Program in MATLAB to solve complicated problems
- Design and implement procedures of numeric modelling to develop useful solutions to complex applications
- Document the solution to posed problems in a way that demonstrates a clear, logical and systematic procedure of modelling.

Graduate Attributes

- Communication
- Problem Solving
- Critical Thinking
- Information Literacy
- Team Work
- Information Technology Competence
- Cross Cultural Competence
- Ethical practice

Examination

Outline

Complete an invigilated examination.

Date

During the examination period at a CQUniversity examination centre.

Weighting

30%

Length

180 minutes

Minimum mark or grade

50%

Exam Conditions

Open Book.

Materials

Dictionary - non-electronic, concise, direct translation only (dictionary must not contain any notes or comments). Calculator - all non-communicable calculators, including scientific, programmable and graphics calculators are authorised

Academic Integrity Statement

As a CQUniversity student you are expected to act honestly in all aspects of your academic work.

Any assessable work undertaken or submitted for review or assessment must be your own work. Assessable work is any type of work you do to meet the assessment requirements in the unit, including draft work submitted for review and feedback and final work to be assessed.

When you use the ideas, words or data of others in your assessment, you must thoroughly and clearly acknowledge the source of this information by using the correct referencing style for your unit. Using others' work without proper acknowledgement may be considered a form of intellectual dishonesty.

Participating honestly, respectfully, responsibly, and fairly in your university study ensures the CQUniversity qualification you earn will be valued as a true indication of your individual academic achievement and will continue to receive the respect and recognition it deserves.

As a student, you are responsible for reading and following CQUniversity's policies, including the **Student Academic Integrity Policy and Procedure**. This policy sets out CQUniversity's expectations of you to act with integrity, examples of academic integrity breaches to avoid, the processes used to address alleged breaches of academic integrity, and potential penalties.

What is a breach of academic integrity?

A breach of academic integrity includes but is not limited to plagiarism, self-plagiarism, collusion, cheating, contract cheating, and academic misconduct. The Student Academic Integrity Policy and Procedure defines what these terms mean and gives examples.

Why is academic integrity important?

A breach of academic integrity may result in one or more penalties, including suspension or even expulsion from the University. It can also have negative implications for student visas and future enrolment at CQUniversity or elsewhere. Students who engage in contract cheating also risk being blackmailed by contract cheating services.

Where can I get assistance?

For academic advice and guidance, the <u>Academic Learning Centre (ALC)</u> can support you in becoming confident in completing assessments with integrity and of high standard.

What can you do to act with integrity?

Be Honest

If your assessment task is done by someone else, it would be dishonest of you to claim it as your own

Seek Help

If you are not sure about how to cite or reference in essays, reports etc, then seek help from your lecturer, the library or the Academic Learning Centre (ALC)

Produce Original Work

Originality comes from your ability to read widely, think critically, and apply your gained knowledge to address a question or problem