CQUniversity Unit Profile
MATH13217 Advanced Calculus
Advanced Calculus
All details in this unit profile for MATH13217 have been officially approved by CQUniversity and represent a learning partnership between the University and you (our student).
The information will not be changed unless absolutely necessary and any change will be clearly indicated by an approved correction included in the profile.
Corrections

Unit Profile Correction added on 06-05-20

Due to the university's COVID-19 response, the exam in this unit will be replaced with a 24 hour take-home exam.

Passing criteria: 40% of the available marks on the assessment

More details will be available in Moodle. Learning outcomes assessed will be unchanged.

General Information

Overview

In this unit, you will study topics in multivariable calculus - differential and integral calculus as applied to scalar and vector functions of more than one variable. After reviewing vectors and the geometry of space, you will investigate derivatives and integrals of vector functions with applications to arc length, curvature of space curves and motion in space. Partial differentiation is studied by defining limits and continuity in two dimensions, and is used to define tangent planes, linear approximations and differentials. The chain rule is developed for functions of more than one variable as well as directional derivatives and the gradient vector, which leads into multivariate optimisation with and without constraints. You will study multiple integrals by expanding the concept of single variable integrals to double and triple integrals which are evaluated as iterated integrals. These ideas are further developed to show you how to calculate volumes, surface areas, masses and centroids of very general regions in two and three dimensional space as well as probability for bivariate distributions. Finally you will investigate the calculus of vector fields, line integrals and surface integrals. The connection between these new types of integrals and multiple integrals is given in three theorems - Green’s Theorem, Stokes’ Theorem and the Divergence Theorem - which turn out to be higher-dimensional versions of the Fundamental Theorem of Calculus. Mathematical software is used to investigate and solve most problems in the unit.

Details

Career Level: Undergraduate
Unit Level: Level 3
Credit Points: 6
Student Contribution Band: 7
Fraction of Full-Time Student Load: 0.125

Pre-requisites or Co-requisites

Prerequisite: MATH12224  Anti-requisite: MATH12172

Important note: Students enrolled in a subsequent unit who failed their pre-requisite unit, should drop the subsequent unit before the census date or within 10 working days of Fail grade notification. Students who do not drop the unit in this timeframe cannot later drop the unit without academic and financial liability. See details in the Assessment Policy and Procedure (Higher Education Coursework).

Offerings For Term 1 - 2020

Online

Attendance Requirements

All on-campus students are expected to attend scheduled classes - in some units, these classes are identified as a mandatory (pass/fail) component and attendance is compulsory. International students, on a student visa, must maintain a full time study load and meet both attendance and academic progress requirements in each study period (satisfactory attendance for International students is defined as maintaining at least an 80% attendance record).

Class and Assessment Overview

Recommended Student Time Commitment

Each 6-credit Undergraduate unit at CQUniversity requires an overall time commitment of an average of 12.5 hours of study per week, making a total of 150 hours for the unit.

Class Timetable

Bundaberg, Cairns, Emerald, Gladstone, Mackay, Rockhampton, Townsville
Adelaide, Brisbane, Melbourne, Perth, Sydney

Assessment Overview

1. Written Assessment
Weighting: 25%
2. Written Assessment
Weighting: 25%
3. Examination
Weighting: 50%

Assessment Grading

This is a graded unit: your overall grade will be calculated from the marks or grades for each assessment task, based on the relative weightings shown in the table above. You must obtain an overall mark for the unit of at least 50%, or an overall grade of 'pass' in order to pass the unit. If any 'pass/fail' tasks are shown in the table above they must also be completed successfully ('pass' grade). You must also meet any minimum mark requirements specified for a particular assessment task, as detailed in the 'assessment task' section (note that in some instances, the minimum mark for a task may be greater than 50%). Consult the University's Grades and Results Policy for more details of interim results and final grades.

Previous Student Feedback

Feedback, Recommendations and Responses

Every unit is reviewed for enhancement each year. At the most recent review, the following staff and student feedback items were identified and recommendations were made.

Feedback from Student evaluation

Feedback

Students have positive comments on the textbook, assignment questions, videos and examples.

Recommendation

Continue to provide current learning and teaching support.

Feedback from Student evaluation

Feedback

Students thought the exam was difficult.

Recommendation

This unit is challenging for most students. The previous fundamental mathematical knowledge and skills play a very important role in this unit, such as the basic algebra, 3-D geometry and calculus. In the previous take home exam, students have two weeks to finish. In the open book exam, they only have three hours and it is not possible to discuss with others. This caused a shift in the grade distribution to the lower part. Our recommendation is to add more tutorial examples for students to follow and increase the Zoom session attendance and engagement.

Unit Learning Outcomes
On successful completion of this unit, you will be able to:
  1. Solve geometric problems in three dimensional space using vectors and their operators
  2. Differentiate and integrate of vector functions to solve problems involving arc length and curvature of space curves
  3. Apply the concept of the limit, continuity and partial derivative of a function of many variables to calculate tangent planes, linear approximations and differentials
  4. Optimise multivariable problems, either with or without constraints, using the chain rule, directional derivatives and the gradient vector
  5. Calculate double and triple integrals over general regions, and also in polar, cylindrical and spherical coordinates
  6. Simplify the evaluation of a double or triple integral by applying the change of variables technique
  7. Solve problems involving the curl and divergence of a vector field
  8. Investigate the calculus of vector fields, line integrals and surface integrals through Green’s theorem, Stokes’ Theorem and the Divergence Theorem
  9. Use mathematical software to visualise, analyse and solve problems in multivariable calculus.
Alignment of Learning Outcomes, Assessment and Graduate Attributes
N/A Level
Introductory Level
Intermediate Level
Graduate Level
Professional Level
Advanced Level

Alignment of Assessment Tasks to Learning Outcomes

Assessment Tasks Learning Outcomes
1 2 3 4 5 6 7 8 9
1 - Written Assessment - 25%
2 - Written Assessment - 25%
3 - Examination - 50%

Alignment of Graduate Attributes to Learning Outcomes

Graduate Attributes Learning Outcomes
1 2 3 4 5 6 7 8 9
1 - Communication
2 - Problem Solving
3 - Critical Thinking
4 - Information Literacy
5 - Team Work
6 - Information Technology Competence
7 - Cross Cultural Competence
8 - Ethical practice
9 - Social Innovation
10 - Aboriginal and Torres Strait Islander Cultures

Alignment of Assessment Tasks to Graduate Attributes

Assessment Tasks Graduate Attributes
1 2 3 4 5 6 7 8 9 10
1 - Written Assessment - 25%
2 - Written Assessment - 25%
3 - Examination - 50%
Textbooks and Resources

Textbooks

Prescribed

Calculus : Concepts and Contexts

Edition 4 (2018)
Authors: Stewart, J.
Brooks-Cole, Cengage Learning
Belmont Belmont , CA , U.S.A.
ISBN: 9781337687669
Binding: Hardcover

Additional Textbook Information

Copies are available for purchase at the CQUni Bookshop here: http://bookshop.cqu.edu.au (search on the Unit code)

IT Resources

You will need access to the following IT resources:
  • CQUniversity Student Email
  • Internet
  • Unit Website (Moodle)
Referencing Style

All submissions for this unit must use the referencing style: Harvard (author-date)

For further information, see the Assessment Tasks.

Teaching Contacts
Roland Dodd Unit Coordinator
r.dodd@cqu.edu.au
Yucang Wang Unit Coordinator
y.wang2@cqu.edu.au
Schedule
Week 1 Begin Date: 09 Mar 2020

Module/Topic

Three Dimensional Coordinate Systems, Vectors, The Dot and Cross Product, Equations of Lines and Planes, Functions and Surfaces, Cylindrical and Spherical Coordinates

Chapter

All of Chapter 9

Events and Submissions/Topic

Week 2 Begin Date: 16 Mar 2020

Module/Topic

Vector Functions and Space Curves, Derivatives and Integrals of Vector Functions, Arc Length and Curvature, Motion in Space

Chapter

Sections 10.1 to 10.4

Events and Submissions/Topic

Week 3 Begin Date: 23 Mar 2020

Module/Topic

Parametric Surfaces, Functions of Several Variables, Limits and Continuity, Partial Derivatives, Tangent Planes and Linear Approximations

Chapter

Section 10.5 plus

Sections 11.1 to 11.4 (part)

Events and Submissions/Topic

Week 4 Begin Date: 30 Mar 2020

Module/Topic

Differentials, The Chain Rule and Implicit Differentiation, Directional Derivatives and the Gradient Vector

Chapter

Sections 11.4 to 11.6

Events and Submissions/Topic

Week 5 Begin Date: 06 Apr 2020

Module/Topic

Maximum and Minimum Values, Lagrange Multipliers

Chapter

Sections 11.7 & 11.8

Events and Submissions/Topic

Vacation Week Begin Date: 13 Apr 2020

Module/Topic

Chapter

Events and Submissions/Topic

Week 6 Begin Date: 20 Apr 2020

Module/Topic

Double Integrals over Rectangles and General Regions, Double Iterated Integrals, Double Integrals in Polar Coordinates

Chapter

Sections 12.1 to 12.4

Events and Submissions/Topic

Assignment 1 Due: Week 6 Friday (24 Apr 2020) 11:00 pm AEST
Week 7 Begin Date: 27 Apr 2020

Module/Topic

Applications of Double Integrals, Surface Area

Chapter

Sections 12.5 & 12.6

Events and Submissions/Topic

Week 8 Begin Date: 04 May 2020

Module/Topic

Triple Integrals and Triple Integrals in Cylindrical and Spherical Coordinates

Chapter

Sections 12.7 & 12.8

Events and Submissions/Topic

Week 9 Begin Date: 11 May 2020

Module/Topic

Change of Variables in Multiple Integrals, Vector Fields, Line Integrals

Chapter

Section 12.9 plus

Sections 13.1 & 13.2

Events and Submissions/Topic

Week 10 Begin Date: 18 May 2020

Module/Topic

The Fundamental Theorem for Line Integrals, Green's Theorem

Chapter

Sections 13.3 & 13.4

Events and Submissions/Topic

Assignment 2 Due: Week 10 Friday (22 May 2020) 11:00 pm AEST
Week 11 Begin Date: 25 May 2020

Module/Topic

Curl and Divergence, Surface Integrals

Chapter

Sections 13.5 & 13.6

Events and Submissions/Topic

Week 12 Begin Date: 01 Jun 2020

Module/Topic

Stoke's Theorem, The Divergence Theorem, Summary

Chapter

Sections 13.7 to 13.9

Events and Submissions/Topic

Review/Exam Week Begin Date: 08 Jun 2020

Module/Topic

Chapter

Events and Submissions/Topic

Exam Week Begin Date: 15 Jun 2020

Module/Topic

Chapter

Events and Submissions/Topic

Assessment Tasks

1 Written Assessment

Assessment Title
Assignment 1

Task Description

Submit full worked solutions to Assignment 1 exercises. The exercises cover topics from Weeks 1 to 5 of the course. The selected exercises and other details are given on the Moodle website.


Assessment Due Date

Week 6 Friday (24 Apr 2020) 11:00 pm AEST

Submit by 11pm on Friday of Week 6


Return Date to Students

Week 8 Friday (8 May 2020)

Results will be available to students approximately two weeks after the submission date.


Weighting
25%

Assessment Criteria

The final mark is out of 25.  Questions are awarded the full marks allocated if they are error-free, partial marks if there are some problems, and no marks if not attempted or contain so many errors as to render the attempt to be without value. To ensure maximum benefit, answers to all questions should be neatly and clearly presented and all appropriate working should be shown.


Referencing Style

Submission
Online

Submission Instructions
Assignment 1 must be submitted online through the MATH13217 Moodle website.

Learning Outcomes Assessed
  • Solve geometric problems in three dimensional space using vectors and their operators
  • Differentiate and integrate of vector functions to solve problems involving arc length and curvature of space curves
  • Apply the concept of the limit, continuity and partial derivative of a function of many variables to calculate tangent planes, linear approximations and differentials
  • Optimise multivariable problems, either with or without constraints, using the chain rule, directional derivatives and the gradient vector
  • Use mathematical software to visualise, analyse and solve problems in multivariable calculus.


Graduate Attributes
  • Communication
  • Problem Solving
  • Critical Thinking
  • Information Literacy
  • Information Technology Competence
  • Ethical practice

2 Written Assessment

Assessment Title
Assignment 2

Task Description

Submit full worked solutions to Assignment 2 exercises. The exercises cover topics from Weeks 6 to 9 of the course. The selected exercises and other details are given on the Moodle website.


Assessment Due Date

Week 10 Friday (22 May 2020) 11:00 pm AEST

Submit by 11pm on Friday of Week 10


Return Date to Students

Week 12 Friday (5 June 2020)

Results will be available to students approximately two weeks after the submission date.


Weighting
25%

Assessment Criteria

The final mark is out of 25. Questions are awarded the full marks allocated if they are error-free, partial marks if there are some problems, and no marks if not attempted or contain so many errors as to render the attempt to be without value. To ensure maximum benefit, answers to all questions should be neatly and clearly presented and all appropriate working should be shown.


Referencing Style

Submission
Online

Submission Instructions
Assignment 2 must be submitted online through the MATH13217 Moodle website.

Learning Outcomes Assessed
  • Calculate double and triple integrals over general regions, and also in polar, cylindrical and spherical coordinates
  • Simplify the evaluation of a double or triple integral by applying the change of variables technique
  • Use mathematical software to visualise, analyse and solve problems in multivariable calculus.


Graduate Attributes
  • Communication
  • Problem Solving
  • Critical Thinking
  • Information Literacy
  • Information Technology Competence
  • Ethical practice

Examination

Outline
Complete an invigilated examination

Date
During the examination period at a CQUniversity examination centre

Weighting
50%

Length
180 minutes

Minimum mark or grade
40%

Exam Conditions
Open Book

Materials
Dictionary - non-electronic, concise, direct translation only (dictionary must not contain any notes or comments).
Calculator - all non-communicable calculators, including scientific, programmable and graphics calculators are authorised
Academic Integrity Statement

As a CQUniversity student you are expected to act honestly in all aspects of your academic work.

Any assessable work undertaken or submitted for review or assessment must be your own work. Assessable work is any type of work you do to meet the assessment requirements in the unit, including draft work submitted for review and feedback and final work to be assessed.

When you use the ideas, words or data of others in your assessment, you must thoroughly and clearly acknowledge the source of this information by using the correct referencing style for your unit. Using others’ work without proper acknowledgement may be considered a form of intellectual dishonesty.

Participating honestly, respectfully, responsibly, and fairly in your university study ensures the CQUniversity qualification you earn will be valued as a true indication of your individual academic achievement and will continue to receive the respect and recognition it deserves.

As a student, you are responsible for reading and following CQUniversity’s policies, including the Student Academic Integrity Policy and Procedure. This policy sets out CQUniversity’s expectations of you to act with integrity, examples of academic integrity breaches to avoid, the processes used to address alleged breaches of academic integrity, and potential penalties.

What is a breach of academic integrity?

A breach of academic integrity includes but is not limited to plagiarism, self-plagiarism, collusion, cheating, contract cheating, and academic misconduct. The Student Academic Integrity Policy and Procedure defines what these terms mean and gives examples.

Why is academic integrity important?

A breach of academic integrity may result in one or more penalties, including suspension or even expulsion from the University. It can also have negative implications for student visas and future enrolment at CQUniversity or elsewhere. Students who engage in contract cheating also risk being blackmailed by contract cheating services.

Where can I get assistance?

For academic advice and guidance, the Academic Learning Centre (ALC) can support you in becoming confident in completing assessments with integrity and of high standard.

What can you do to act with integrity?