CC31 - Bachelor of Engineering (Honours)

Overview

Compulsory Residential School

Some units in this course require you to attend a compulsory Residential School or Work Integrated Learning. Please see Course Features in the Getting Started tab for further information.

Course Overview

The Bachelor of Engineering (Honours) strongly focuses on contextual learning and promoting sustainable development so that you will apply theory to authentic scenarios throughout your course.

In your first year, you will develop skills in problem-solving, teamwork, and professional practice together with learning foundation technical content. In Term 2 of Year 1, you will undertake an authentic industry project with work-integrated learning. By the end of the first year, you will have experienced engineering projects from different disciplines, which will assist you in deciding which engineering discipline and course major you wish to pursue: Civil, Civil with Humanitarian, Electrical, Electrical with Data Analytics, Electrical with Industrial Automation, Electrical with Information Processing, Mechanical, Mechanical with Industrial Automation or Resource Systems.

The second year is all about gaining in-depth discipline-specific knowledge and skills. Your project exposure will continue, allowing you to apply the theoretical knowledge you have gained to deliver tangible engineering outcomes.

In your course's third and fourth years, you will develop a deeper understanding of the foundation knowledge you gained in the first and second years. In some units, you will explore specific aspects of your discipline. You will also complete up to three double credit-point (12cp) units where you will work on authentic projects, sometimes with an industry mentor. All Majors include a professional practice elective, while in the Civil, Electrical, and Mechanical Majors, you can choose an additional elective to enhance your career prospects. Finally, you will complete an undergraduate thesis as a significant individual project to confirm your ability to work as a professional engineer.

This course is available on-campus and mixed-mode, giving you the flexibility to study even if working or living in a remote location.

The Bachelor of Engineering (Honours) may also be used as an alternative entry pathway to the Bachelor of Engineering (Honours) and Diploma of Professional Practice (Co-op Engineering) course for students who do not meet the entry requirements for that course.

Career Information

As a professional engineer, you will create change by developing new technologies and solutions to improve working and living standards for the community while protecting the environment. Professional engineers engage with people from all sections of society. They must listen to societal needs and apply their knowledge of science, technology, mathematics, and engineering standards to design, prototype, implement, operate and maintain solutions to complex problems.

Civil engineers are typically involved in planning, designing and maintaining physical infrastructure systems, including the construction of buildings and bridges, transport and water resource systems, sewage and industrial waste systems, harbours and railways.

Electrical engineers are typically involved in designing, developing and maintaining electrical power and energy systems, including electricity generation and distribution, telecommunications, instrumentation and control, microprocessors and electronics.

Mechanical engineers are typically involved in planning, designing, installing, maintaining and operating machines, thermodynamic and combustion systems, fluid systems, materials handling systems, manufacturing equipment and process plant.

Resource Systems engineers are typically involved with designing, planning and operating mines and mineral and coal processing plants. They specialise in applying contemporary technologies to increase productivity, sustainability and safety of resource industry (mining and mineral processing) operations. In addition, they will work closely with Civil, Electrical and Mechanical engineers to maintain complex facilities.

Course Details
Duration 4 years full-time or 8 years part-time
Credit Points that Must be Earned 192
Number of Units Required CQUniversity uses the concept of credits to express the amount of study required for a particular course and individual units. The number of units varies between courses. Units in undergraduate courses normally consist of 6 points of credit or multiples thereof (e.g. 12, 18, 24).
Expected Hours of Study One point of credit is equivalent to an expectation of approximately two hours of student work per week in a term.
Course Type Undergraduate Award
Qualification (post nominal) BEng (Hons)
AQF Level Level 8: Bachelor Honours Degree
Course Fees
Indicative Year - 2024
  • Commonwealth Supported Place – Indicative First Year Fee - $8,382
  • Domestic Full Fee Paying – Indicative First Year Fee - $25,408.5
  • International Indicative First Term Fee - $18,510
  • International Indicative First Year Fee - $36,900
Indicative Year - 2023
  • International Indicative First Term Fee - $18,300
  • International Indicative First Year Fee - $36,600
  • Commonwealth Supported Place – Indicative First Year Fee - $7,586
Indicative Year - 2022
  • Commonwealth Supported Place – Indicative First Year Fee - $7,013
  • International Indicative First Year Fee - $36,120
  • International Indicative First Term Fee - $18,030

Admission Codes

Where and when can I start?
Units offered internally at the below campuses may be delivered using a combination of face-to-face and video conferencing style teaching.
Units offered via MIX mode are delivered online and require compulsory attendance of site-specific learning activities such as on-campus residential schools, placements and/or work integrated learning. See Course Features tab for further information. Online units are delivered using online resources only.
Please Click Here for more information.
The following tables list the courses availabilities by location and term. Directing your pointer over your preferred location will provide further information if this course is not available for the full duration. Please be sure to also check individual unit availability by location and term prior to enrolling.

Domestic Availability

Term 2 - 2025

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 1 - 2025

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 2 - 2024

Students commencing in Term 2 must have advanced standing for Mathematics demonstrated by thorough knowledge of Mathematical Methods. Addressing mathematics knowledge deficits is not possible as the bridging Foundation Mathematics unit is unavailable in Term 2.
Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 1 - 2024

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 2 - 2023

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 1 - 2023

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 2 - 2022

The Mechatronics major is only available at the Mackay campus and by Mixed Mode (Online). The Resource Systems major is only available at Mackay (domestic only) and Rockhampton, and by Mixed Mode. Please see 'More Details' page for further information.
Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 1 - 2022

The Mechatronics major is only available at the Mackay campus and by Mixed Mode (Online). The Resource Systems major is only available at Mackay (domestic only) and Rockhampton, and by Mixed Mode. Please see 'More Details' page for further information.
Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 2 - 2021

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 1 - 2021

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 2 - 2020

The Mechatronics major is only available at the Mackay Campus and in Mixed Mode (Online). Please see the More Details section of the handbook for further information.
Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 1 - 2020

The Mechatronics major is only available at the Mackay Campus and in Mixed Mode (Online). Please see the More Details section of the handbook for further information.
Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 2 - 2019

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 1 - 2019

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 2 - 2018

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some units in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Bundaberg
Cairns
Distance
Gladstone
Mackay
Rockhampton

Term 1 - 2018

Bundaberg
Cairns
Distance
Gladstone
Mackay
Rockhampton

Term 2 - 2017

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some units in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Bundaberg
Cairns
Distance
Gladstone
Mackay
Rockhampton

Term 1 - 2017

Bundaberg
Cairns
Distance
Gladstone
Mackay
Rockhampton

Term 2 - 2016

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some units in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Bundaberg
Cairns
Distance
Gladstone
Mackay
Rockhampton

Term 1 - 2016

Bundaberg
Cairns
Distance
Gladstone
Mackay
Rockhampton

Term 2 - 2015

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some courses in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Bundaberg
Distance
Gladstone
Mackay
Rockhampton

Term 1 - 2015

Bundaberg
Distance
Gladstone
Mackay
Rockhampton
Show All

International Availability

Term 2 - 2025

Sorry, no international availabilities found.

Term 1 - 2025

Cairns
Rockhampton

Term 2 - 2024

Students commencing in Term 2 must have advanced standing for Mathematics demonstrated by thorough knowledge of Mathematical Methods. Addressing mathematics knowledge deficits is not possible as the bridging Foundation Mathematics unit is unavailable in Term 2.
Sorry, no international availabilities found.

Term 1 - 2024

Cairns
Online
Rockhampton

Term 2 - 2023

Sorry, no international availabilities found.

Term 1 - 2023

Cairns
Rockhampton

Term 2 - 2022

The Mechatronics major is only available at the Mackay campus and by Mixed Mode (Online). The Resource Systems major is only available at Mackay (domestic only) and Rockhampton, and by Mixed Mode. Please see 'More Details' page for further information.
Sorry, no international availabilities found.

Term 1 - 2022

The Mechatronics major is only available at the Mackay campus and by Mixed Mode (Online). The Resource Systems major is only available at Mackay (domestic only) and Rockhampton, and by Mixed Mode. Please see 'More Details' page for further information.
Cairns
Mackay
Rockhampton

Term 2 - 2021

Sorry, no international availabilities found.

Term 1 - 2021

Cairns
Mackay
Online
Rockhampton

Term 2 - 2020

The Mechatronics major is only available at the Mackay Campus and in Mixed Mode (Online). Please see the More Details section of the handbook for further information.
Sorry, no international availabilities found.

Term 1 - 2020

The Mechatronics major is only available at the Mackay Campus and in Mixed Mode (Online). Please see the More Details section of the handbook for further information.
Cairns
Mackay
Rockhampton

Term 2 - 2019

Bundaberg
Cairns
Gladstone
Mackay
Rockhampton

Term 1 - 2019

Bundaberg
Cairns
Gladstone
Mackay
Rockhampton

Term 2 - 2018

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some units in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Bundaberg
Cairns
Distance
Gladstone
Mackay
Rockhampton

Term 1 - 2018

Bundaberg
Cairns
Distance
Gladstone
Mackay
Rockhampton

Term 2 - 2017

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some units in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Bundaberg
Distance
Gladstone
Mackay
Rockhampton

Term 1 - 2017

Bundaberg
Distance
Gladstone
Mackay
Rockhampton

Term 2 - 2016

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some units in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Bundaberg
Distance
Gladstone
Mackay
Rockhampton

Term 1 - 2016

Bundaberg
Distance
Gladstone
Mackay
Rockhampton

Term 2 - 2015

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some courses in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Bundaberg
Distance
Gladstone
Mackay
Rockhampton

Term 1 - 2015

Bundaberg
Distance
Gladstone
Mackay
Rockhampton
Show All
For any problems regarding admissions availability for the selected course please contact 13 CQUni (13 27 86) or send us an email at http://contactus.cqu.edu.au/
What do I need to start?
Entry Scores
Rank Threshold SR 69.00 | ATAR 69.00
Entry Requirements

English (Units 3 & 4, C) or equivalent; General Mathematics (Units 3 & 4, C) or equivalent

English Language Proficiency Requirements:

If you were not born in Australia, Canada, New Zealand, the United Kingdom, Ireland, South Africa, or the United States of America you are required to meet the English Language Proficiency requirements set by the University. Applicants are required to provide evidence of completion within the last 10 years of:

    · A secondary qualification (Year 11 and 12, or equivalent), or

    · A completed Australian Qualifications Framework (AQF) Diploma level qualification, or

    · Bachelor level qualification study for a period of at least 2 years full-time with a minimum overall GPA of 4.0 completed in Australia, Canada, New Zealand, United Kingdom, Ireland, South Africa or the United States of America, which will meet the English proficiency.

If you do not satisfy any of the above you will need to undertake an English language proficiency test and achieve the following scores:

    · An International English Language Testing System (IELTS Academic) overall band score of at least 6.0, with a minimum of 6.0 in each subset; or

    · An Occupational English Test with Grades A or B only in each of the four components; or

    · Pearson Test of English Academic (PTE Academic) - Requires an overall score of 54 with no sub-score less than 54; or

    · Test of English as a Foreign Language (TOEFL)– Requires an overall score of 75 or better with no score less than 21 (Internet Based).

English test results remain valid for no more than two years between the final examination date and the date of commencement of the study and must appear on a single result certificate.

If you are an International student please visit International students English requirements for further information.

Each student will be assessed individually.

Security Requirements

N/A

Health Requirements

N/A

Assumed Knowledge

Recommended study: Mathematical Methods, Physics, and Design

Course Features

Awards and Accreditation

Interim Awards Not applicable
Exit Awards CM23 - Undergraduate Certificate in Introductory Engineering CL42 - Diploma of Engineering Studies
Accreditation
  • Professional Practice: Electrical and Information Processing Major
    Engineers Australia

    The CC31 Bachelor of Engineering (Honours) course is fully accredited* by Engineers Australia.

    Graduates are recognised as professional engineers and are eligible for Graduate membership with EA.

    *The following recently introduced majors have provisional accreditation until there are sufficient graduates for them to be reviewed by EA:

    • Electrical with Data Analytics
    • Electrical with Information Processing
    • Resource Systems
    • Civil with Humanitarian
  • Professional Practice: Electrical and Data Analytics Major
    Engineers Australia

    The CC31 Bachelor of Engineering (Honours) course is fully accredited* by Engineers Australia.

    Graduates are recognised as professional engineers and are eligible for Graduate membership with EA.

    *The following recently introduced majors have provisional accreditation until there are sufficient graduates for them to be reviewed by EA:

    • Electrical with Data Analytics
    • Electrical with Information Processing
    • Resource Systems
    • Civil with Humanitarian
  • Professional Practice: Civil and Humanitarian Major
    Engineers Australia

    The CC31 Bachelor of Engineering (Honours) course is fully accredited* by Engineers Australia.

    Graduates are recognised as professional engineers and are eligible for Graduate membership with EA.

    *The following recently introduced majors have provisional accreditation until there are sufficient graduates for them to be reviewed by EA:

    • Electrical with Data Analytics
    • Electrical with Information Processing
    • Resource Systems
    • Civil with Humanitarian
  • Professional Practice: Resource Systems Major
    Engineers Australia

    The CC31 Bachelor of Engineering (Honours) course is fully accredited* by Engineers Australia.

    Graduates are recognised as professional engineers and are eligible for Graduate membership with EA.

    *The following recently introduced majors have provisional accreditation until there are sufficient graduates for them to be reviewed by EA:

    • Electrical with Data Analytics
    • Electrical with Information Processing
    • Resource Systems
    • Civil with Humanitarian
  • Professional Practice: Mechatronics Major
    Engineers Australia

    The CC31 Bachelor of Engineering (Honours) course is fully accredited* by Engineers Australia.

    Graduates are recognised as professional engineers and are eligible for Graduate membership with EA.

    *The following recently introduced majors have provisional accreditation until there are sufficient graduates for them to be reviewed by EA:

    • Electrical with Data Analytics
    • Electrical with Information Processing
    • Resource Systems
    • Civil with Humanitarian
  • Professional Practice: Mechanical Major
    Engineers Australia

    The CC31 Bachelor of Engineering (Honours) course is fully accredited* by Engineers Australia.

    Graduates are recognised as professional engineers and are eligible for Graduate membership with EA.

    *The following recently introduced majors have provisional accreditation until there are sufficient graduates for them to be reviewed by EA:

    • Electrical with Data Analytics
    • Electrical with Information Processing
    • Resource Systems
    • Civil with Humanitarian
  • Professional Practice: Electrical Major
    Engineers Australia

    The CC31 Bachelor of Engineering (Honours) course is fully accredited* by Engineers Australia.

    Graduates are recognised as professional engineers and are eligible for Graduate membership with EA.

    *The following recently introduced majors have provisional accreditation until there are sufficient graduates for them to be reviewed by EA:

    • Electrical with Data Analytics
    • Electrical with Information Processing
    • Resource Systems
    • Civil with Humanitarian
  • Professional Practice: Civil Major
    Engineers Australia

    The CC31 Bachelor of Engineering (Honours) course is fully accredited* by Engineers Australia.

    Graduates are recognised as professional engineers and are eligible for Graduate membership with EA.

    *The following recently introduced majors have provisional accreditation until there are sufficient graduates for them to be reviewed by EA:

    • Electrical with Data Analytics
    • Electrical with Information Processing
    • Resource Systems
    • Civil with Humanitarian

Residential School Requirements

Compulsory Residential School All units in this course are offered in online mode. Some units will have compulsory residential schools for online students. These residential schools give students an opportunity to develop and demonstrate practical skills.
Click here to view all Residential Schools

Practicum/Work Placement

ENEP14004 - Students are required to complete 480 hours (including a minimum of 240 hours of industry experience) of Engineering Professional Practice prior to graduation. Once the students have completed the professional practice requirements, they must enrol in this unit and provide evidence of how they have attained the professional engineering practice exposure required by Engineers Australia.

Previous and Current Enrolments

Year Number of Students
2024 207
2023 296
2022 298
2021 352
2020 343
Inherent Requirements
There are Inherent Requirements (IRs) that you need to be aware of, and fulfil, to achieve the core learning outcomes of the units and course. IRs are the essential capabilities, knowledge, behaviours and skills that are needed to complete a unit or course.

Please note that in some instances there may be similarities between course, entry and inherent requirements.

If you experience difficulties meeting these requirements, reasonable adjustments may be made upon contacting accessibility@cqu.edu.au. Adjustment must not compromise the academic integrity of the degree or course chosen at CQUniversity or the legal requirements of field education.

Ethical Behaviour

Examples are:

  • Complying with academic and non-academic misconduct policies and procedures such as CQUniversity’s Student Charter, Student Misconduct Policy and Student Behavioural Misconduct Procedures and Assessment Policy and Procedure (Higher Education Coursework).
  • Using your knowledge and skills for the benefit of the community to create engineering solutions for a sustainable future, in accordance with the Engineers Australia Code of Ethics. In doing so, you will strive to serve the community ahead of other personal or sectarian interests.
  • Demonstrating integrity, scientific and technical competence, exude leadership qualities and promote sustainability, in the course of your engineering practice.
Behavioural Stability

Examples are:

  • Being reflective with personal behaviours in relation to professional performance and being positive and receptive to processing constructive supervisor/lecturer feedback or criticism.
  • Interacting with people from a wide range of backgrounds and cultures in a calm and composed manner in difficult to deal with situations.
  • Approaching difficult situations with diplomacy and refraining from using inappropriate words/actions either verbally or in written communication.
  • Accepting that engineering practice is a human-centric activity and that you must therefore, develop your ability to work well with others.
  • Having the desire to solve problems in order to improve the standard of living of the people in the community.
Legal Compliance

Examples are:

  • Understanding and complying with all relevant policies and procedures applicable in engineering practice.
  • Complying with rules and regulations that apply in your practice location.
  • Recognising and positively responding to any legal compliance issues that arise and bringing them to the attention of the appropriate stakeholders. 
Communication Skills (Verbal, Non-verbal, Written and Technology)

Examples are:

  • Verbally communicating in the English language with accuracy, appropriateness and effectiveness.
  • Listening to other's point of view and actively participating in discussion activities related to the course.
  • Using language that is appropriate to the context of the individual, group or workplace.
  • Establishing rapport with clients from differing socio-cultural environments in the delivery of engineering projects and responding appropriately to clients, supervisors and other professionals.
  • Using appropriate facial expressions: eye contact, being mindful of space, time boundaries, a range of body movements and gestures.
  • Recognising and interpreting non-verbal cues of others and responding appropriately during activities related to the course, as well as in the engineering practice environment.
  • Competently and appropriately constructing written assessment work in a logical, coherent manner, and with correct grammar and punctuation to the required academic standards.
  • Expressing complex and detailed information and knowledge into a logical and legible report, in a timely manner that meets professional standards and clearly communicates the intended message.
  • Accurately conveying and documenting information in a written form that meets legal and engineering requirements.
  • Accessing a computer for your studies and possessing basic computer knowledge and skills to engage in the online learning environment that may include completing relevant online assessments and participating in online forums or responding to emails.
  • Regularly accessing the Internet for research, and email for communication with peers and lecturers.
  • Being adept and proficient in the use of discipline-specific computer systems and being able to analyse, manipulate and display scientific information.
  • Presenting in front of a range of stakeholders including fellow students, academics, and industry representatives
Cognitive Abilities (Knowledge and Cognitive Skills, Literacy and Numeracy)

Examples are:

  • Conceptualising and using appropriate knowledge in response to academic assessment items.
  • Applying theoretical knowledge, research evidence, policies and procedures in engineering practice.
  • Discerning the wide variety of socio-economic environments that engineering practice takes place in, and provide effective professional solutions to stakeholders.
  • Competently reading, writing and accurately interpreting information to convey language effectively in engineering projects and services.
  • Producing accurate, concise and clear engineering documentation which meets legal requirements.
  • Retrieving correct information from appropriates sources, processing it and converting it into simpler terms if required.
  • Demonstrating competency in applying appropriate mathematical knowledge and skills to make calculations that represent an engineering system.
  • Demonstrating effective use of numeracy skills to make accurate interpretations of engineering system response data.
  • Applying numeracy skills to interpret and solve problems in a range of engineering projects and services.
Sensory Abilities (Visual, Auditory, Tactile)

Examples are:

  • Accurately using instruments for measurements.
  • Observing and detecting subtle changes in responses to engineering systems using instrumentation.
  • Having sufficient auditory ability to be capable of hearing warnings when on site.
  • Interacting effectively with stakeholders including clients, members of the community, tradespeople and other members of the engineering team.
  • Climbing a ladder or steep stairs, walking along scaffolding and traversing a construction site.
Relational Skills

Examples are:

  • Patience - is valuable when it comes to dealing with picky or difficult clients, complex long-term projects or colleagues who are slow and hard to keep on task.
  • Trustworthiness - an invaluable asset to employers, who not only feel comfortable with the individual’s honesty and ethical values, but believe they will do what they say when they say they will do it.
  • Reliability - is an important relational skill in every profession, whether it relates to showing up for work on time, performing duties as assigned, or meeting crucial deadlines.
  • Empathy - being able to consistently look at and understand the perspective of others is a relational skill that’s highly valued in the customer service arena.
  • Influence - Having the ability to effectively persuade and influence others is a valuable relational workplace skill. An influential employee is typically intuitive and able to read people, which is an asset in many professional venues.
Reflective Skills

Examples are:

  • Read - around the topics you are learning about or want to learn about and develop.
  • Ask - others about the way they do things and why.
  • Watch - what is going on around you.
  • Feel - pay attention to your emotions, what prompts them, and how you deal with negative ones.
  • Talk - share your views and experiences with others.
  • Think - learn to value time spent thinking about your work.
Sustainable Performance

Examples are:

  • Actively participating in activities related to the course and professional experience.
  • Performing with the required physical and mental energy and endurance in performing engineering skills and services during set time frames.
  • Showing persistence when learning a new concept - seeing it as a challenge to be solved rather than an insurmountable obstacle.
Strength and Mobility (Gross Motor Skills and Fine Motor Skills)

Examples are:

  • Conducting repairs to engineering systems.
  • Transporting field equipment during the data collection phase of engineering projects.
  • Traversing uneven ground on construction sites.
  • Manipulating instruments in tests and measurements.
  • Using knobs and dials in equipment used for field data collection.
Interpersonal Engagement

Examples are:

  • Communicating respectfully with a multitude of community, government and industry stakeholders.
  • Creating and sustaining professional relationships.
  • Considering the views of different stakeholders in decision making. 
Information and Communication Technology (ICT) Abilities
Examples are:
 
 
  • Competently using a desktop operating system such as Microsoft Windows or Mac OS X.
  • Competently using productivity software such as Microsoft Office.
  • Competently using the internet for a range of study and work-integrated learning activities.
  • Using associated electronic devices such as (but not limited to) digital scanners, copiers, cameras and video cameras, a tablet computer or a mobile phone for study activities.
  • Completely using video communication software such as Zoom and Skype.
Core Learning Outcomes
Please refer to the Core Structure Learning Outcomes
Civil Learning Outcomes
  • 1. Design and analyse complex structures that comply with relevant Australian Standards
  • 2. Analyse and design geotechnical engineering elements using fundamental concepts including soil classification and properties
  • 3. Analyse and design water resource infrastructure by applying hydraulics and hydrology concepts considering Australian Rainfall and Runoff Standards
  • 4. Evaluate traffic data and road safety issues and apply relevant standards to design transportation infrastructure
  • 5. Apply mathematical, science, and engineering skills to engineering disciplines
  • 6. Scope, research, plan, manage and successfully complete engineering projects autonomously or in teams
  • 7. Demonstrate professional skills for civil engineering graduates including effective management of risks, ethical practice, and disseminating outcomes through reports, presentations, and technical drawings
  • 8. Apply civil engineering principles to create innovative solutions aligned with the United Nations Sustainable Development Goals.
  Course Learning Outcomes
Australian Qualifications Framework Descriptors 1 2 3 4 5 6 7 8
1. KNOWLEDGE Have coherent and advanced knowledge of the underlying principles and concepts in one or more disciplines and knowledge of research principles and methods
2. SKILLS Have cognitive skills to review, analyse, consolidate and synthesise knowledge to identify and provide solutions to complex problems with intellectual independence
3. SKILLS Have cognitive and technical skills to demonstrate a broad understanding of a body of knowledge and theoretical concepts with advanced understanding in some areas
4. SKILLS Have cognitive skills to exercise critical thinking and judgement in developing new understanding
5. SKILLS Have technical skills to design and use research in a project
6. SKILLS Have communication skills to present a clear and coherent exposition of knowledge and ideas to a variety of audiences
7. APPLICATION OF KNOWLEDGE & SKILLS Demonstrate initiative and judgement in professional practice and/or scholarship
8. APPLICATION OF KNOWLEDGE & SKILLS Be able to adapt knowledge and skills in diverse contexts
9. APPLICATION OF KNOWLEDGE & SKILL Be responsible and accountable for own learning and practice and in collaboration with others within broad parameters
10. APPLICATION OF KNOWLEDGE & SKILL Plan and execute project work and/or a piece of research and scholarship with some independence
APPLICATION OF KNOWLEDGE & SKILLS Display leadership by creating inclusive work environments and work with Aboriginal and Torres Strait Islander people in a culturally respectful manner
Civil with Humanitarian Learning Outcomes
  • 1. Design and analyse complex structures that comply with relevant Australian Standards
  • 2. Analyse and design geotechnical engineering elements using fundamental concepts including soil classification and properties
  • 3. Analyse and design water resource infrastructure by applying hydraulics and hydrology concepts considering Australian Rainfall and Runoff Standards
  • 4. Evaluate traffic data and road safety issues and apply relevant standards to design transportation infrastructure
  • 5. Design municipal infrastructure for increased disaster resilience
  • 6. Conduct all phases of engineering projects both autonomously and in teams
  • 7. Demonstrate the skills of risk management, ethical practice, and professional communication at the level expected of a civil engineering graduate.
  • 8. Apply civil and humanitarian engineering principles to create innovative solutions aligned with the United Nations Sustainable Development Goals.
  Course Learning Outcomes
Australian Qualifications Framework Descriptors 1 2 3 4 5 6 7 8
1. KNOWLEDGE Have coherent and advanced knowledge of the underlying principles and concepts in one or more disciplines and knowledge of research principles and methods
2. SKILLS Have cognitive skills to review, analyse, consolidate and synthesise knowledge to identify and provide solutions to complex problems with intellectual independence
3. SKILLS Have cognitive and technical skills to demonstrate a broad understanding of a body of knowledge and theoretical concepts with advanced understanding in some areas
4. SKILLS Have cognitive skills to exercise critical thinking and judgement in developing new understanding
5. SKILLS Have technical skills to design and use research in a project
6. SKILLS Have communication skills to present a clear and coherent exposition of knowledge and ideas to a variety of audiences
7. APPLICATION OF KNOWLEDGE & SKILLS Demonstrate initiative and judgement in professional practice and/or scholarship
8. APPLICATION OF KNOWLEDGE & SKILLS Be able to adapt knowledge and skills in diverse contexts
9. APPLICATION OF KNOWLEDGE & SKILL Be responsible and accountable for own learning and practice and in collaboration with others within broad parameters
10. APPLICATION OF KNOWLEDGE & SKILL Plan and execute project work and/or a piece of research and scholarship with some independence
APPLICATION OF KNOWLEDGE & SKILLS Display leadership by creating inclusive work environments and work with Aboriginal and Torres Strait Islander people in a culturally respectful manner
Electrical Learning Outcomes
  • 1. Analyse and solve complex problems in electrical power systems associated with energy generation, transmission, distribution, system protection, and integration of renewable energy
  • 2. Design and analyse complex industrial electrical machines and drive applications
  • 3. Analyse, design, implement and test instrumentation and control systems using industry-standard software and hardware tools
  • 4. Design, analyse and implement complex circuits, embedded systems, and industrial communication networks to provide solutions to industrial applications
  • 5. Apply mathematics, science, and engineering skills to engineering disciplines
  • 6. Scope, research, plan, manage and successfully complete engineering projects autonomously or in teams
  • 7. Demonstrate professional skills for electrical engineering graduates including effective management of risks, ethical practice, and disseminating outcomes through reports, presentations, and technical drawings
  • 8. Apply electrical engineering principles to create innovative solutions aligned with the United Nations Sustainable Development Goals.
  Course Learning Outcomes
Australian Qualifications Framework Descriptors 1 2 3 4 5 6 7 8
1. KNOWLEDGE Have coherent and advanced knowledge of the underlying principles and concepts in one or more disciplines and knowledge of research principles and methods
2. SKILLS Have cognitive skills to review, analyse, consolidate and synthesise knowledge to identify and provide solutions to complex problems with intellectual independence
3. SKILLS Have cognitive and technical skills to demonstrate a broad understanding of a body of knowledge and theoretical concepts with advanced understanding in some areas
4. SKILLS Have cognitive skills to exercise critical thinking and judgement in developing new understanding
5. SKILLS Have technical skills to design and use research in a project
6. SKILLS Have communication skills to present a clear and coherent exposition of knowledge and ideas to a variety of audiences
7. APPLICATION OF KNOWLEDGE & SKILLS Demonstrate initiative and judgement in professional practice and/or scholarship
8. APPLICATION OF KNOWLEDGE & SKILLS Be able to adapt knowledge and skills in diverse contexts
9. APPLICATION OF KNOWLEDGE & SKILL Be responsible and accountable for own learning and practice and in collaboration with others within broad parameters
10. APPLICATION OF KNOWLEDGE & SKILL Plan and execute project work and/or a piece of research and scholarship with some independence
APPLICATION OF KNOWLEDGE & SKILLS Display leadership by creating inclusive work environments and work with Aboriginal and Torres Strait Islander people in a culturally respectful manner
Electrical with Data Analytics Learning Outcomes
  • 1. Analyse and solve complex problems in electrical power systems associated with energy generation, transmission, distribution, system protection, and integration of renewable energy
  • 2. Design and analyse complex industrial electrical machines and drive applications
  • 3. Analyse, design, implement and test instrumentation and control systems using industry-standard software and hardware tools
  • 4. Design, analyse and implement complex circuits, embedded systems, and industrial communication networks to provide solutions to industrial applications
  • 5. Design and program databases and dashboards for monitoring and analysing electrical systems
  • 6. Scope, research, plan, manage and successfully complete engineering projects autonomously or in teams
  • 7. Demonstrate professional skills for electrical engineering graduates including effective management of risks, ethical practice, and disseminating outcomes through reports, presentations, and technical drawings
  • 8. Apply electrical engineering principles to create innovative solutions aligned with the United Nations Sustainable Development Goals.
  Course Learning Outcomes
Australian Qualifications Framework Descriptors 1 2 3 4 5 6 7 8
1. KNOWLEDGE Have coherent and advanced knowledge of the underlying principles and concepts in one or more disciplines and knowledge of research principles and methods
2. SKILLS Have cognitive skills to review, analyse, consolidate and synthesise knowledge to identify and provide solutions to complex problems with intellectual independence
3. SKILLS Have cognitive and technical skills to demonstrate a broad understanding of a body of knowledge and theoretical concepts with advanced understanding in some areas
4. SKILLS Have cognitive skills to exercise critical thinking and judgement in developing new understanding
5. SKILLS Have technical skills to design and use research in a project
6. SKILLS Have communication skills to present a clear and coherent exposition of knowledge and ideas to a variety of audiences
7. APPLICATION OF KNOWLEDGE & SKILLS Demonstrate initiative and judgement in professional practice and/or scholarship
8. APPLICATION OF KNOWLEDGE & SKILLS Be able to adapt knowledge and skills in diverse contexts
9. APPLICATION OF KNOWLEDGE & SKILL Be responsible and accountable for own learning and practice and in collaboration with others within broad parameters
10. APPLICATION OF KNOWLEDGE & SKILL Plan and execute project work and/or a piece of research and scholarship with some independence
APPLICATION OF KNOWLEDGE & SKILLS Display leadership by creating inclusive work environments and work with Aboriginal and Torres Strait Islander people in a culturally respectful manner
Electrical with Industrial Automation Learning Outcomes
  • 1. Analyse and solve complex problems in electrical power systems associated with energy generation, transmission, distribution, system protection, and integration of renewable energy
  • 2. Design and analyse complex industrial electrical machines and drive applications
  • 3. Analyse, design, implement and test instrumentation and control systems using industry-standard software and hardware tools
  • 4. Design, analyse and implement complex circuits, embedded systems, and industrial communication networks to provide solutions to industrial applications
  • 5. Design electrical control systems incorporating automation for industrial applications
  • 6. Scope, research, plan, manage and successfully complete engineering projects autonomously or in teams
  • 7. Demonstrate professional skills for electrical engineering graduates including effective management of risks, ethical practice, and disseminating outcomes through reports, presentations, and technical drawings
  • 8. Apply electrical engineering principles to create innovative solutions aligned with the United Nations Sustainable Development Goals.
  Course Learning Outcomes
Australian Qualifications Framework Descriptors 1 2 3 4 5 6 7 8
1. KNOWLEDGE Have coherent and advanced knowledge of the underlying principles and concepts in one or more disciplines and knowledge of research principles and methods
2. SKILLS Have cognitive skills to review, analyse, consolidate and synthesise knowledge to identify and provide solutions to complex problems with intellectual independence
3. SKILLS Have cognitive and technical skills to demonstrate a broad understanding of a body of knowledge and theoretical concepts with advanced understanding in some areas
4. SKILLS Have cognitive skills to exercise critical thinking and judgement in developing new understanding
5. SKILLS Have technical skills to design and use research in a project
6. SKILLS Have communication skills to present a clear and coherent exposition of knowledge and ideas to a variety of audiences
7. APPLICATION OF KNOWLEDGE & SKILLS Demonstrate initiative and judgement in professional practice and/or scholarship
8. APPLICATION OF KNOWLEDGE & SKILLS Be able to adapt knowledge and skills in diverse contexts
9. APPLICATION OF KNOWLEDGE & SKILL Be responsible and accountable for own learning and practice and in collaboration with others within broad parameters
10. APPLICATION OF KNOWLEDGE & SKILL Plan and execute project work and/or a piece of research and scholarship with some independence
APPLICATION OF KNOWLEDGE & SKILLS Display leadership by creating inclusive work environments and work with Aboriginal and Torres Strait Islander people in a culturally respectful manner
Electrical with Information Processing Learning Outcomes
  • 1. Analyse and solve complex problems in electrical power systems associated with energy generation, transmission, distribution, system protection, and integration of renewable energy
  • 2. Design and analyse complex industrial electrical machines and drive applications
  • 3. Analyse, design, implement and test instrumentation and control systems using industry-standard software and hardware tools
  • 4. Design, analyse and implement complex circuits, embedded systems, and industrial communication networks to provide solutions to industrial applications
  • 5. Design and program databases and applications to monitor and control electrical systems
  • 6. Scope, research, plan, manage and successfully complete engineering projects autonomously or in teams
  • 7. Demonstrate professional skills for electrical engineering graduates including effective management of risks, ethical practice, and disseminating outcomes through reports, presentations, and technical drawings
  • 8. Apply electrical engineering principles to create innovative solutions aligned with the United Nations Sustainable Development Goals.
  Course Learning Outcomes
Australian Qualifications Framework Descriptors 1 2 3 4 5 6 7 8
1. KNOWLEDGE Have coherent and advanced knowledge of the underlying principles and concepts in one or more disciplines and knowledge of research principles and methods
2. SKILLS Have cognitive skills to review, analyse, consolidate and synthesise knowledge to identify and provide solutions to complex problems with intellectual independence
3. SKILLS Have cognitive and technical skills to demonstrate a broad understanding of a body of knowledge and theoretical concepts with advanced understanding in some areas
4. SKILLS Have cognitive skills to exercise critical thinking and judgement in developing new understanding
5. SKILLS Have technical skills to design and use research in a project
6. SKILLS Have communication skills to present a clear and coherent exposition of knowledge and ideas to a variety of audiences
7. APPLICATION OF KNOWLEDGE & SKILLS Demonstrate initiative and judgement in professional practice and/or scholarship
8. APPLICATION OF KNOWLEDGE & SKILLS Be able to adapt knowledge and skills in diverse contexts
9. APPLICATION OF KNOWLEDGE & SKILL Be responsible and accountable for own learning and practice and in collaboration with others within broad parameters
10. APPLICATION OF KNOWLEDGE & SKILL Plan and execute project work and/or a piece of research and scholarship with some independence
APPLICATION OF KNOWLEDGE & SKILLS Display leadership by creating inclusive work environments and work with Aboriginal and Torres Strait Islander people in a culturally respectful manner
Mechanical Learning Outcomes
  • 1. Apply mathematics, science and engineering skills to engineering disciplines
  • 2. Design and analyse machine components and systems by applying principles of materials, statics, stress analysis, and machine design using relevant design standards and codes
  • 3. Apply dynamic modeling, control, and simulation methods to design machine components and systems
  • 4. Design and analyse energy generation and energy conversion systems through the application of thermodynamics and heat transfer principles
  • 5. Design and model fluid machinery by applying fluid mechanics and hydraulics principles
  • 6. Scope, research, plan, manage and successfully complete engineering projects autonomously and as part of teams
  • 7. Demonstrate professional skills for mechanical engineering graduates including effective management of risks, ethical practice, and disseminating outcomes through reports, presentations, and technical drawings
  • 8. Apply mechanical engineering principles to create innovative solutions aligned with the United Nations Sustainable Development Goals.
  Course Learning Outcomes
Australian Qualifications Framework Descriptors 1 2 3 4 5 6 7 8
1. KNOWLEDGE Have coherent and advanced knowledge of the underlying principles and concepts in one or more disciplines and knowledge of research principles and methods
2. SKILLS Have cognitive skills to review, analyse, consolidate and synthesise knowledge to identify and provide solutions to complex problems with intellectual independence
3. SKILLS Have cognitive and technical skills to demonstrate a broad understanding of a body of knowledge and theoretical concepts with advanced understanding in some areas
4. SKILLS Have cognitive skills to exercise critical thinking and judgement in developing new understanding
5. SKILLS Have technical skills to design and use research in a project
6. SKILLS Have communication skills to present a clear and coherent exposition of knowledge and ideas to a variety of audiences
7. APPLICATION OF KNOWLEDGE & SKILLS Demonstrate initiative and judgement in professional practice and/or scholarship
8. APPLICATION OF KNOWLEDGE & SKILLS Be able to adapt knowledge and skills in diverse contexts
9. APPLICATION OF KNOWLEDGE & SKILL Be responsible and accountable for own learning and practice and in collaboration with others within broad parameters
10. APPLICATION OF KNOWLEDGE & SKILL Plan and execute project work and/or a piece of research and scholarship with some independence
APPLICATION OF KNOWLEDGE & SKILLS Display leadership by creating inclusive work environments and work with Aboriginal and Torres Strait Islander people in a culturally respectful manner
Mechanical with Industrial Automation Learning Outcomes
  • 1. Apply mathematics, science, and engineering skills to engineering disciplines
  • 2. Design and analyse machine components and systems by applying principles of materials, statics, stress analysis, and machine design using relevant design standards and codes
  • 3. Apply dynamic modeling, control, and simulation methods to design machine components and systems
  • 4. Design and analyse energy generation and energy conversion systems through the application of thermodynamics and heat transfer principles
  • 5. Design mechanical control systems incorporating automation for industrial applications
  • 6. Scope, research, plan, manage and successfully complete engineering projects autonomously and as part of teams
  • 7. Demonstrate professional skills for mechanical engineering graduates including effective management of risks, ethical practice, and disseminating outcomes through reports, presentations, and technical drawings
  • 8. Apply mechanical engineering principles to create innovative solutions aligned with the United Nations Sustainable Development Goals.
  Course Learning Outcomes
Australian Qualifications Framework Descriptors 1 2 3 4 5 6 7 8
1. KNOWLEDGE Have coherent and advanced knowledge of the underlying principles and concepts in one or more disciplines and knowledge of research principles and methods
2. SKILLS Have cognitive skills to review, analyse, consolidate and synthesise knowledge to identify and provide solutions to complex problems with intellectual independence
3. SKILLS Have cognitive and technical skills to demonstrate a broad understanding of a body of knowledge and theoretical concepts with advanced understanding in some areas
4. SKILLS Have cognitive skills to exercise critical thinking and judgement in developing new understanding
5. SKILLS Have technical skills to design and use research in a project
6. SKILLS Have communication skills to present a clear and coherent exposition of knowledge and ideas to a variety of audiences
7. APPLICATION OF KNOWLEDGE & SKILLS Demonstrate initiative and judgement in professional practice and/or scholarship
8. APPLICATION OF KNOWLEDGE & SKILLS Be able to adapt knowledge and skills in diverse contexts
9. APPLICATION OF KNOWLEDGE & SKILL Be responsible and accountable for own learning and practice and in collaboration with others within broad parameters
10. APPLICATION OF KNOWLEDGE & SKILL Plan and execute project work and/or a piece of research and scholarship with some independence
APPLICATION OF KNOWLEDGE & SKILLS Display leadership by creating inclusive work environments and work with Aboriginal and Torres Strait Islander people in a culturally respectful manner
Resource Systems Learning Outcomes
  • 1. Create an automated mine site design for an existing facility
  • 2. Assess the feasibility of a resource project within the constraints of relevant legislation
  • 3. Analyse and interpret data to make decisions using an evidence-based approach
  • 4. Design effective solutions for complex resource systems problems using industry standards, relevant legislation and appropriate software
  • 5. Design resource systems to improve safety and productivity while engaging stakeholders in a socially sustainable manner
  • 6. Conduct all phases of engineering projects both autonomously and in teams
  • 7. Demonstrate the skills of risk management, ethical practice, and professional communication at the level expected of a resource systems engineering graduate
  • 8. Apply resource systems engineering principles to create innovative solutions aligned with the United Nations Sustainable Development Goals.
  Course Learning Outcomes
Australian Qualifications Framework Descriptors 1 2 3 4 5 6 7 8
1. KNOWLEDGE Have coherent and advanced knowledge of the underlying principles and concepts in one or more disciplines and knowledge of research principles and methods
2. SKILLS Have cognitive skills to review, analyse, consolidate and synthesise knowledge to identify and provide solutions to complex problems with intellectual independence
3. SKILLS Have cognitive and technical skills to demonstrate a broad understanding of a body of knowledge and theoretical concepts with advanced understanding in some areas
4. SKILLS Have cognitive skills to exercise critical thinking and judgement in developing new understanding
5. SKILLS Have technical skills to design and use research in a project
6. SKILLS Have communication skills to present a clear and coherent exposition of knowledge and ideas to a variety of audiences
7. APPLICATION OF KNOWLEDGE & SKILLS Demonstrate initiative and judgement in professional practice and/or scholarship
8. APPLICATION OF KNOWLEDGE & SKILLS Be able to adapt knowledge and skills in diverse contexts
9. APPLICATION OF KNOWLEDGE & SKILL Be responsible and accountable for own learning and practice and in collaboration with others within broad parameters
10. APPLICATION OF KNOWLEDGE & SKILL Plan and execute project work and/or a piece of research and scholarship with some independence
APPLICATION OF KNOWLEDGE & SKILLS Display leadership by creating inclusive work environments and work with Aboriginal and Torres Strait Islander people in a culturally respectful manner
Course Structure

In order to complete this course, you must:

  1. Complete the core structure
  2. Complete 1 major
Number of units: 7 Total credit points: 42

To complete this course, you must pass all units in the Core Structure and one Major. The More Details tab has a link to the Course Planners Site which lists all units for this course. Note that full-time students generally enrol in 24cp per term and part-time students generally enrol in a half-load of 12cp per term.

Available units
Students must complete the following compulsory units:
ENEG11005 Introduction to Contemporary Engineering
ENEG11007 Engineering Industry Project Investigation
ENEG11008 Materials for Engineers
MATH11247 Foundation Mathematics
MATH11218 Applied Mathematics
MATH11219 Applied Calculus

Professional Engineering Practice

To be eligible for graduation, you must complete 480 hours of Professional Engineering Practice, including a minimum of 240 hours of industry experience. Mandatory work experience is set by the course accreditation body Engineers Australia. In one of your final terms of study, you must enrol into the following zero-credit unit, at no cost to you, and record your Professional Engineering Practice in an ePortfolio. The More Details tab contains a link to the Undergraduate Engineering Course Moodle Meta-site which contains further instructions on completing your Professional Engineering Practice.

Available units
Students must complete the following compulsory units:
ENEP14004 Engineering Practice Experience
Course Structure

In order to complete this course, you must:

  1. Complete the core structure
  2. Complete 1 major
Number of units: 21 Total credit points: 150

Intermediate Units

Available units
Students must complete the following compulsory units:
ENEG11006 Engineering Statics
ENEG11009 Fundamentals of Sustainable Energy
ENEG12007 Creative Engineering
ENEC12008 Geotechnical Engineering
ENEC12009 Engineering Surveying and Spatial Sciences
ENEC12010 Hydraulics and Hydrology
ENEC12011 Transport Systems
ENEC12012 Stress Analysis
MATH12225 Applied Computational Modelling
ENEG13002 Engineering Futures

Advanced Units

ENEC14014, ENEC14016, and ENEC14017 are double credit-point (12cp) units intended to provide an authentic project experience.

Available units
Students must complete the following compulsory units:
ENEC13014 Water Supply and Wastewater Technology
ENEC13015 Steel and Timber Design
ENEC13016 Concrete Technology and Design
ENEC13017 Advanced Structural Analysis
ENEC14014 Structural and Geotechnical Design
ENEC14016 Traffic and Transportation Engineering
ENEC14017 Water Resources Engineering

Elective Units

There are two elective units, but one must be chosen from the professional practice units. The More Details tab contains a link to the Course Planner Site where all pre-approved electives are listed. Contact the Head of Course if you want to discuss studying a unit, not on the pre-approved list.

Undergraduate Thesis

At the end of your course, you will complete an undergraduate thesis over two terms. Your thesis confirms your ability to practice as a Professional Engineer. It is strongly recommended to decide your topic based on your career interests. You should organise an Academic Adviser just prior to commencing the thesis planning unit.

Available units
Students must complete the following compulsory units:
ENEG14003 Engineering Honours Project Planning
ENEG14005 Engineering Honours Project Implementation
Course Structure

In order to complete this course, you must:

  1. Complete the core structure
  2. Complete 1 major

Civil with Humanitarian Major

Number of units: 21 Total credit points: 150

Intermediate units

Available units
Students must complete the following compulsory units:
ENEG11006 Engineering Statics
SOCL11059 Introducing Social Change
ENEG12007 Creative Engineering
ENEC12009 Engineering Surveying and Spatial Sciences
ENEC12010 Hydraulics and Hydrology
ENEC12008 Geotechnical Engineering
ENEC12011 Transport Systems
ENEC12012 Stress Analysis
ENEG12008 Appropriate Technology for Humanitarian Projects
ENEG13002 Engineering Futures

Advanced units

ENEC14014, ENEC14016, and ENEC14017 are double credit-point (12cp) units intended to provide an authentic project experience.

Available units
Students must complete the following compulsory units:
ENEG13001 Humanitarian Engineering Project
ENEC13014 Water Supply and Wastewater Technology
ENEC13015 Steel and Timber Design
ENEC13016 Concrete Technology and Design
ENEC14014 Structural and Geotechnical Design
ENEC14016 Traffic and Transportation Engineering
ENEC14017 Water Resources Engineering
ENEC14018 Disaster Resilient Infrastructure

Elective Units

There is one elective unit, but it must be chosen from the professional practice units.

Available units
Students must complete 1 from the following units:
ENEP11007 Engineering Employment Preparation
ENEP12007 Engineering Business Fundamentals
ENEP12008 Engineering Leadership

Undergraduate Thesis

At the end of your course, you will complete an undergraduate thesis over two terms. Your thesis confirms your ability to work as a Professional Engineer. It is strongly recommended to decide your topic based on your career interests. You should organise an Academic Adviser just prior to commencing the thesis planning unit.

Available units
Students must complete the following compulsory units:
ENEG14003 Engineering Honours Project Planning
ENEG14005 Engineering Honours Project Implementation
Course Structure

In order to complete this course, you must:

  1. Complete the core structure
  2. Complete 1 major
Number of units: 21 Total credit points: 150

Intermediate Units

Available units
Students must complete the following compulsory units:
ENEG11006 Engineering Statics
ENEG11009 Fundamentals of Sustainable Energy
ENEG12007 Creative Engineering
ENEE12014 Electrical Circuit Analysis
ENEE12015 Electrical Power Engineering
ENEE12016 Signals and Systems
ENEX12002 Introductory Electronics
MATH12225 Applied Computational Modelling
ENEG13002 Engineering Futures

Advanced Units

ENEE14005, ENEE14006, and ENEE14007 are double credit-point (12cp) units intended to provide an authentic project experience.

Available units
Students must complete the following compulsory units:
ENEX13002 Power Electronics
ENEE13016 Power System Protection
ENEE13019 Control Systems Analysis and Design
ENEE13021 Power System Analysis and Design
ENEE13022 Communication Technology
ENEE14005 Capstone Power and Control Design
ENEE14006 Embedded Microcontrollers
ENEE14007 Electrical Machines and Drives Applications

Elective Units

There are two elective units, but one must be chosen from the professional practice units. The More Details tab contains a link to the Course Planner Site where all pre-approved electives are listed. Contact the Head of Course if you want to discuss studying a unit, not on the pre-approved list.

Undergraduate Thesis

At the end of your course, you will complete an undergraduate thesis over two terms. Your thesis confirms your ability to work as a Professional Engineer. It is strongly recommended to decide your topic based on your career interests. You should organise an Academic Adviser just prior to commencing the thesis planning unit.

Available units
Students must complete the following compulsory units:
ENEG14003 Engineering Honours Project Planning
ENEG14005 Engineering Honours Project Implementation
Course Structure

In order to complete this course, you must:

  1. Complete the core structure
  2. Complete 1 major

Electrical with Data Analytics Major

Number of units: 21 Total credit points: 150

Intermediate Units

Available units
Students must complete the following compulsory units:
ENEG11009 Fundamentals of Sustainable Energy
COIT11226 Systems Analysis
COIT11222 Programming Fundamentals
COIT11237 Database Design & Implementation
COIT11240 Dashboard Design and Visualisation
ENEE12014 Electrical Circuit Analysis
ENEE12015 Electrical Power Engineering
ENEE12016 Signals and Systems
ENEX12002 Introductory Electronics
COIT12209 Data Science
MATH12225 Applied Computational Modelling

Advanced Units

ENEE14005, ENEE14006, and ENEE14007 are double credit-point (12cp) units intended to provide an authentic project experience.

Available units
Students must complete the following compulsory units:
ENEE13016 Power System Protection
ENEE13019 Control Systems Analysis and Design
ENEE13021 Power System Analysis and Design
ENEE13022 Communication Technology
ENEE14005 Capstone Power and Control Design
ENEE14006 Embedded Microcontrollers
ENEE14007 Electrical Machines and Drives Applications

Elective Units

There is one elective unit, but it must be chosen from the professional practice units.

Available units
Students must complete 1 from the following units:
ENEP11007 Engineering Employment Preparation
ENEP12007 Engineering Business Fundamentals
ENEP12008 Engineering Leadership
ENEG13002 Engineering Futures

Undergraduate Thesis

At the end of your course, you will complete an undergraduate thesis over two terms. Your thesis confirms your ability to work as a Professional Engineer. It is strongly recommended to decide your topic based on your career interests. You should organise an Academic Adviser just prior to commencing the thesis planning unit.

Available units
Students must complete the following compulsory units:
ENEG14003 Engineering Honours Project Planning
ENEG14005 Engineering Honours Project Implementation
Course Structure

In order to complete this course, you must:

  1. Complete the core structure
  2. Complete 1 major

Electrical with Industrial Automation Major

Number of units: 21 Total credit points: 150

Intermediate Units

Available units
Students must complete the following compulsory units:
ENEG11006 Engineering Statics
ENEG11009 Fundamentals of Sustainable Energy
ENEM12010 Engineering Dynamics
ENEE12014 Electrical Circuit Analysis
ENEE12015 Electrical Power Engineering
ENEE12016 Signals and Systems
ENEX12002 Introductory Electronics
MATH12225 Applied Computational Modelling
ENEG13002 Engineering Futures

Advanced Units

ENEE14005, ENEE14006 and ENEE14007 are double credit-point (12cp) units intended to provide an authentic project experience.

Available units
Students must complete the following compulsory units:
ENEX13002 Power Electronics
ENEX13001 Instrumentation and Industrial Automation
ENEE13019 Control Systems Analysis and Design
ENEE13021 Power System Analysis and Design
ENEE13022 Communication Technology
ENEX13004 Robotics and Autonomous Systems
ENEE14005 Capstone Power and Control Design
ENEE14006 Embedded Microcontrollers
ENEE14007 Electrical Machines and Drives Applications

Elective Units

There is one elective which must be chosen from the professional practice units.

Available units
Students must complete 1 from the following units:
ENEP11007 Engineering Employment Preparation
ENEP12007 Engineering Business Fundamentals
ENEP12008 Engineering Leadership

Undergraduate Thesis

At the end of your course, you will complete an undergraduate thesis over two terms. Your thesis confirms your ability to work as a Professional Engineer. It is strongly recommended to decide your topic based on your career interests. You should organise an Academic Adviser just prior to commencing the thesis planning unit.

Available units
Students must complete the following compulsory units:
ENEG14003 Engineering Honours Project Planning
ENEG14005 Engineering Honours Project Implementation
Course Structure

In order to complete this course, you must:

  1. Complete the core structure
  2. Complete 1 major

Electrical with Information Processing Major

Number of units: 21 Total credit points: 150

Intermediate Units

Available units
Students must complete the following compulsory units:
ENEG11009 Fundamentals of Sustainable Energy
COIT11222 Programming Fundamentals
COIT11226 Systems Analysis
COIT11237 Database Design & Implementation
ENEE12014 Electrical Circuit Analysis
ENEE12015 Electrical Power Engineering
ENEE12016 Signals and Systems
ENEX12002 Introductory Electronics
COIS12036 Human-Computer Interaction
COIT12207 Internet Applications
MATH12225 Applied Computational Modelling

Advanced Units

ENEE14005, ENEE14006 and ENEE14007 are double credit-point (12cp) units intended to provide an authentic project experience.

Available units
Students must complete the following compulsory units:
ENEE13016 Power System Protection
ENEE13019 Control Systems Analysis and Design
ENEE13021 Power System Analysis and Design
ENEE13022 Communication Technology
ENEE14005 Capstone Power and Control Design
ENEE14006 Embedded Microcontrollers
ENEE14007 Electrical Machines and Drives Applications

Elective Units

There is one elective unit, but it must be chosen from the professional practice units.

Available units
Students must complete 1 from the following units:
ENEP11007 Engineering Employment Preparation
ENEP12007 Engineering Business Fundamentals
ENEP12008 Engineering Leadership
ENEG13002 Engineering Futures

Undergraduate Thesis

At the end of your course, you will complete an undergraduate thesis over two terms. Your thesis confirms your ability to work as a Professional Engineer. It is strongly recommended to decide your topic based on your career interests. You should organise an Academic Adviser just prior to commencing the thesis planning unit.

Available units
Students must complete the following compulsory units:
ENEG14003 Engineering Honours Project Planning
ENEG14005 Engineering Honours Project Implementation
Course Structure

In order to complete this course, you must:

  1. Complete the core structure
  2. Complete 1 major
Number of units: 22 Total credit points: 150

Intermediate Units

Available units
Students must complete the following compulsory units:
ENEG11006 Engineering Statics
ENEG11009 Fundamentals of Sustainable Energy
ENEG12007 Creative Engineering
ENEM12006 Fluid Mechanics
ENEM12008 Solid Materials Handling
ENEM12009 Structural Mechanics
ENEM12010 Engineering Dynamics
MATH12225 Applied Computational Modelling
ENEG13002 Engineering Futures

Advanced Units

ENEM14014 and ENEM14015 are double credit-point (12cp) units intended to provide an authentic project experience.

Available units
Students must complete the following compulsory units:
ENEM13012 Maintenance Engineering
ENEM13014 Thermodynamics
ENEM13015 Design of Machine Elements
ENEM13018 Materials and Manufacturing
ENEM13019 Fluid Machinery
ENEX13003 Design of Mechatronics Elements
ENEM14011 Energy Conversion
ENEM14014 Capstone Thermofluid Engineering
ENEM14015 Dynamic System Modelling and Control

Elective Units

There are two elective units, but one must be chosen from the professional practice units. The More Details tab contains a link to the Course Planner Site where all pre-approved electives are listed. Contact the Head of Course if you want to discuss studying a unit, not on the pre-approved list.

Undergraduate Thesis

At the end of your course, you will complete an undergraduate thesis over two terms. Your thesis confirms your ability to work as a Professional Engineer. It is strongly recommended to decide your topic based on your career interests. You should organise an Academic Adviser just prior to commencing the thesis planning unit.

Available units
Students must complete the following compulsory units:
ENEG14003 Engineering Honours Project Planning
ENEG14005 Engineering Honours Project Implementation
Course Structure

In order to complete this course, you must:

  1. Complete the core structure
  2. Complete 1 major

Mechanical with Industrial Automation Major

Number of units: 21 Total credit points: 150

Intermediate Units

Available units
Students must complete the following compulsory units:
ENEG11006 Engineering Statics
ENEG11009 Fundamentals of Sustainable Energy
ENEX12002 Introductory Electronics
ENEM12006 Fluid Mechanics
ENEM12008 Solid Materials Handling
ENEM12009 Structural Mechanics
ENEM12010 Engineering Dynamics
MATH12225 Applied Computational Modelling
ENEG13002 Engineering Futures

Advanced Units

ENEE14006, ENEM14014 and ENEM14015 are double credit-point (12cp) units intended to provide an authentic project experience.

Available units
Students must complete the following compulsory units:
ENEM13012 Maintenance Engineering
ENEM13014 Thermodynamics
ENEM13018 Materials and Manufacturing
ENEX13001 Instrumentation and Industrial Automation
ENEX13003 Design of Mechatronics Elements
ENEX13004 Robotics and Autonomous Systems
ENEE14006 Embedded Microcontrollers
ENEM14014 Capstone Thermofluid Engineering
ENEM14015 Dynamic System Modelling and Control

Elective Units

There is one elective which must be chosen from the professional practice units.

Available units
Students must complete 1 from the following units:
ENEP11007 Engineering Employment Preparation
ENEP12007 Engineering Business Fundamentals
ENEP12008 Engineering Leadership

Undergraduate Thesis

At the end of your course, you will complete an undergraduate thesis over two terms. Your thesis confirms your ability to work as a Professional Engineer. It is strongly recommended to decide your topic based on your career interests. You should organise an Academic Adviser just prior to commencing the thesis planning unit.

Available units
Students must complete the following compulsory units:
ENEG14003 Engineering Honours Project Planning
ENEG14005 Engineering Honours Project Implementation
Course Structure

In order to complete this course, you must:

  1. Complete the core structure
  2. Complete 1 major

Resource Systems Major

Number of units: 22 Total credit points: 150

Intermediate Units

Available units
Students must complete the following compulsory units:
ENEG11006 Engineering Statics
ENEG11009 Fundamentals of Sustainable Energy
COIT11222 Programming Fundamentals
COIT11226 Systems Analysis
COIT11237 Database Design & Implementation
ENAR12014 Introduction to Mining Technology
ENAR12016 Earth Science
ENEC12009 Engineering Surveying and Spatial Sciences
ENEE12014 Electrical Circuit Analysis
ENEE12016 Signals and Systems
ENEX12002 Introductory Electronics

Advanced Units

ENER14001 and ENER14002 are double credit-point (12cp) units intended to provide an authentic project experience.

Available units
Students must complete the following compulsory units:
ENAR12004 Mine Management and Safety
ENAR12006 Rock Engineering
ENAR12013 Mine Planning and Design
COIT12209 Data Science
ENEX13001 Instrumentation and Industrial Automation
ENAR13001 Economic Geology
ENER14001 Resource Systems Automation Project
ENER14002 Resource Systems Feasibility Project

Elective Units

There is one elective unit, but it must be chosen from the professional practice units.

Available units
Students must complete 1 from the following units:
ENEP11007 Engineering Employment Preparation
ENEP12007 Engineering Business Fundamentals
ENEP12008 Engineering Leadership
ENEG13002 Engineering Futures

Undergraduate Thesis

At the end of your course, you will complete an undergraduate thesis over two terms. Your thesis confirms your ability to work as a Professional Engineer. It is strongly recommended to decide your topic based on your career interests. You should organise an Academic Adviser just prior to commencing the thesis planning unit.

Available units
Students must complete the following compulsory units:
ENEG14003 Engineering Honours Project Planning
ENEG14005 Engineering Honours Project Implementation
More Details

Entry Requirements

If you do not have this requirement, Intermediate Mathematics for University and Technical Mathematics for University is deemed equivalent to Maths B.  You may also need to do Fundamental Mathematics for University before commencing Intermediate Mathematics for University and Technical Mathematics for University. You can contact the Academic Learning Centre - Mathematics to discuss your previous maths history to determine if you are required to complete any of the above.


Availability of Mechatronics Major

The Mechatronics major is only available at the Mackay Campus and in Mixed Mode (Online). Hence the Mechatronics units (ENEX units) are only delivered in Mackay campus. Some units of the Mechatronics major, such as foundation engineering units and electrical engineering units are offered in other regional Queensland campuses. For domestic students from regional Queensland, you also have the option of enrolling in Mixed Mode and studying some units on-campus at a campus near you. If you need further information regarding this, please contact the Head of Course Undergradaute Engineering.

 

Availability of Resource Systems Major 

The Resource Systems major is only available at the Rockhampton and Mackay Campuses and in Mixed Mode (Online). Hence the resource systems units (ENAR and ENER units) are only delivered in Rockahmaptong and Mackay campuses. Some units of the Resource Systems major, such as foundation engineering units, electrical units and ICT units are offered in other regional Queensland campuses. For domestic students from regional Queensland, you also have the option of enrolling in Mixed Mode and studying some units on-campus at a campus near you. If you need further information regarding this, please contact the Head of Course Undergradaute Engineering.

 

Course Planners

Click here for part-time and full-time planners.

Students who commenced prior to 2016 should refer to individual course planners.

Please click here for the list of approved Engineering electives.

Completing your Final Year Project - ENEG14003 Engineering Honours Project Planning

In line with Higher Education Division Policy for enrolment into Project based units you will need to follow the process below prior enrolment into the relevant unit:-

  1. Develop the project proposal
  2. Obtain an Academic Supervisor for the project
  3. Determine your project title

Once you have made these arrangements, provide this information to your Unit Coordinator. Once approved you will be manually enrolled in the relevant unit by your Student Advisor (Courses and Careers).

ENEG14005 Engineering Honours Project Implementation

  1. Confirm Project Proposal is continuation of previous
  2. Advise name of your Academic Supervisor for the project
  3. Provide the name of your project title
  4. Obtain a Pass (or higher) result in the prerequisite unit

Provide this information to your Unit Coordinator. Once approved you will be manually enrolled in the relevant unit by your Student Advisor (Courses and Careers).

 

Recommended Study Schedule

Students may determine their own schedule based upon credit transfers and personal study requirements. It is important to note that full-time students usually enrol in 24 units of credit per term and part-time students usually enrol in 12 units of credit per term. 


Engineering Practice (Industry Experience) and Report

An integral part of the Bachelor of Engineering course, and a requirement of Engineers Australia for course accreditation, is that each student must gain at least 12 weeks of approved industry experience in an appropriate area of engineering. The student must also submit a report indicating the type of work done, the degree of responsibility involved, the person(s) to whom the student was directly responsible, and the general activities of the employer.

This report must be certified as correct by the employer and submitted by the end of the second week of the term following the vacation period of employment.

Further information regarding the reporting requirements refer to the ‘Engineering Practice' document located here

Note that even if you are working full-time in industry whilst studying, you must still submit a report. However, if you are carrying out appropriate engineering work, you can use your normal employment as the basis of your report.

You should ensure that you submit your report in a timely manner prior to your expected graduation date. You will be assessed for eligibility to graduate immediately following Certification of Grades in your final Term of study. Please allow a 2 week turn-around time for assessment of your report. Failure to meet this deadline may result in a delay to your graduation date.

 

Degrees In Engineering with Honours

 

Engineering students will be eligible for Honours according to the University’s Grades and Results policy, which include all attempts at each unit within the course to determine the overall Grade Point Average (GPA).

 

The GPA of a student’s overall results throughout their course of study must be a minimum of 5.00 to be eligible for Honours. Failure to meet this GPA will result in students not being eligible for the award of First or Second Class Honours, regardless of their performance in the required 48 credit points of Engineering unit study (as detailed below).

 

Note - The CC31 course does not award Third Class Honours regardless of the students overall GPA.

 

The Honours calculation will only be calculated based on the first attempt of the required units (48cp) as outlined below:

 

Civil Major:

·         ENEG14005 Engineering Honours Project Implementation (12cp)

·         ENEC14014 Structural and Geotechnical Design (12cp)

·         ENEC14016 Traffic and Transportation Engineering (12cp)

·         ENEC14017 Water Resources Engineering (12cp)

 

Electrical Major:

·         ENEG14005 Engineering Honours Project Implementation (12cp)

·         ENEE14005 Capstone Power and Control Design (12cp)

·         ENEE14006 Embedded Microcontrollers (12cp)

·         ENEE14007 Electrical Machines and Drives Applications (12cp)

 

Mechanical Major:

·         ENEG14005 Engineering Project Implementation (12cp)

·         ENEM14014 Capstone Thermofluid Engineering (12cp)

·         ENEM14015 Dynamic System Modelling and Control (12cp)

·         ENEM14016 Fluid Machinery (12cp)

 

Mechatronics Major:

·         ENEG14005 Engineering Honours Project Implementation (12cp)

·         ENEX14001 Mechatronics System Design (12cp)

·         ENEE14006 Embedded Microcontrollers (12cp)

·         ENEX13003 Design of Mechatronics Elements (6cp)

·         ENEX13004 Advanced Dynamics and Robotics (6cp)

 

Rules for progression

The following explains the rules for progression into the Bachelor of Engineering (Co-op)/Diploma of Professional Practice (Engineering)

Students enrolled in the Bachelor of Engineering course who meet all the rules for progression in the Bachelor of Engineering (Co-op) and Diploma of Professional Practice (Engineering) courses may be invited to transfer into the Bachelor of Engineering (Co-op) and Diploma of Professional Practice (Engineering) course.

In the event of limited numbers in the remaining unfilled industry placements, only invitations to fill unclaimed placements will be made.

Where the number of students eligible for transfer is greater than the number of remaining unfilled industry placements, invitations to transfer shall be decided by the student's WGPA after completion of the first term in the second year of study.

 

Articulation and Credit Transfer

The course allows the recognition of students' appropriate previous study and experience gained from working in industry, through 'Recognition of Prior Learning' (RPL) and 'Recognition of Current Competencies' (RCC). Students will be assessed for credit transfer on a case-by-case basis and will be required to nominate units they wish to be considered for exemption from. Grounds for that exemption, through students' demonstration of prior achievement of the CQUniversity units' learning outcomes, must be documented and assessed as satisfactory by the Course Committee.

Students may only gain credit transfer for up to 67% of the overall course, on a units of credit basis, with a majority of Advanced Level units studied.

We are unable to assess credit transfer until potential students accept an offer to study with the University, however you are welcome to do a self assessment by using our Credit Transfer Kit.

Please note that study undertaken more than10 years ago is not normally considered unless the applicant can supply certified documents showing that they have been continually using the required skills in the work force. Generally only TAFE diploma level or above is recognised for credit at tertiary level.

Refer to the Credit Transfer website at http://www.cqu.edu.au/credittransfer for further details on the guidelines and application process.

 

Computing Requirements

It is a requirement of enrolment in this course that students have access to the CQUniversity website. Students may be required to undertake various components of study in the course using email and the Internet.

It is strongly recommended that students have access to a broadband connection or higher to access online student resources that would include but not limited to, email, internet, video streaming, electronic assessment submission.


Humanitarian Engineering Project

Humanitarian Engineering is the application of engineering to meet the needs of disadvantaged communities and in particular focuses on programs that are affordable, sustainable, and based on local resources. CQUniversity engineering students can now participate in humanitarian engineering activities through ENEG13001 Humanitarian Engineering Project unit. Students must complete a two-week mobility trip as a compulsory practicum for this unit and work on an international humanitarian engineering project for a developing or marginalised community. Places are limited to self-paying participants and recipients of a New Colombo Plan Mobility Scholarship. Through collaborative discussions with the host community, students will critically analyse the development context and identify wants, needs, strengths and opportunities for social innovation and make recommendations by applying principles of sustainable development, human-centred design and systems engineering. Students will create a project implementation plan, generate rapid prototypes and present your design to community members and assess its long-term viability, while demonstrating ethical conduct and professional accountability, team membership and team leadership, knowledge management and a creative, innovative and proactive demeanour.

 

Additional financial assistance for mobility trips is available by application for an OS-Help loan. As this unit is taken as an elective, students in the Mechatronics major are unable to enrol in this unit.