ENEM12006 - Fluid Mechanics

General Information

Unit Synopsis

This unit introduces the fundamental properties of fluids, analysis of pipe flow, buoyancy, and stability of floating objects. It presents methods of analysing fluid systems using the concept of a control volume combined with the conservation of mass and momentum equations. You analyse incompressible flows in pipe systems and use similitude and modelling principles and techniques to solve problems in fluid mechanics. You will prepare technical and laboratory reports using appropriate 'mechanical engineering language', and document the process of modelling and analysis. You are required to act professionally in presenting information, communicating, working, and learning, both individually and in teams. In this unit, you must complete compulsory practical activities. Refer to the Engineering Undergraduate Course Moodle site for proposed dates.

Details

Level Undergraduate
Unit Level 2
Credit Points 6
Student Contribution Band SCA Band 2
Fraction of Full-Time Student Load 0.125
Pre-requisites or Co-requisites
Prerequisites: MATH11219 Engineering Mathematics AND ENEG11006 Engineering Statics.

Important note: Students enrolled in a subsequent unit who failed their pre-requisite unit, should drop the subsequent unit before the census date or within 10 working days of Fail grade notification. Students who do not drop the unit in this timeframe cannot later drop the unit without academic and financial liability. See details in the Assessment Policy and Procedure (Higher Education Coursework).

Class Timetable View Unit Timetable
Residential School Compulsory Residential School
View Unit Residential School

Unit Availabilities from Term 3 - 2021

Term 2 - 2022 Profile
Bundaberg
Cairns
Gladstone
Mackay
Mixed Mode
Rockhampton

Attendance Requirements

All on-campus students are expected to attend scheduled classes – in some units, these classes are identified as a mandatory (pass/fail) component and attendance is compulsory. International students, on a student visa, must maintain a full time study load and meet both attendance and academic progress requirements in each study period (satisfactory attendance for International students is defined as maintaining at least an 80% attendance record).

Assessment Overview

Recommended Student Time Commitment

Each 6-credit Undergraduate unit at CQUniversity requires an overall time commitment of an average of 12.5 hours of study per week, making a total of 150 hours for the unit.

Assessment Tasks

Assessment Task Weighting
1. Practical and Written Assessment 20%
2. Written Assessment 20%
3. Written Assessment 20%
4. Take Home Exam 40%

This is a graded unit: your overall grade will be calculated from the marks or grades for each assessment task, based on the relative weightings shown in the table above. You must obtain an overall mark for the unit of at least 50%, or an overall grade of ‘pass’ in order to pass the unit. If any ‘pass/fail’ tasks are shown in the table above they must also be completed successfully (‘pass’ grade). You must also meet any minimum mark requirements specified for a particular assessment task, as detailed in the ‘assessment task’ section (note that in some instances, the minimum mark for a task may be greater than 50%).

Consult the University’s Grades and Results Policy for more details of interim results and final grades

Past Exams

To view Past Exams, please login
Previous Feedback

Term 2 - 2020 : The overall satisfaction for students in the last offering of this course was 4.2 (on a 5 point Likert scale), based on a 26.09% response rate.

Feedback, Recommendations and Responses

Every unit is reviewed for enhancement each year. At the most recent review, the following staff and student feedback items were identified and recommendations were made.

Source: Have your say
Feedback
A hands on experience in Laboratory exercise are helped students to understand the principles of fluid mechanics in real world situations.
Recommendation
The practice will continue in the future offering.
Action Taken
We followed the same practice in this offering.
Source: Have your say
Feedback
The amount of detailed information about the unit is great. The tutorials for the assignments and the preparation of the study materials for the exam are excellent.
Recommendation
The practice will continue in the future offering.
Action Taken
We followed the same approach in this offering.
Source: Have your say
Feedback
The return dates of the laboratory reports.
Recommendation
Students informed that the submission dates of the laboratory reports are needed to be spread out through the entire term instead of all being due on week 12. This issue will be reviewed and amended in the next offering.
Action Taken
We reviewed this issue in this offering.
Source: Have your say
Feedback
The lecture materials of this unit are informative and concise.
Recommendation
The practice will continue in future offerings.
Action Taken
Nil.
Source: Have your say
Feedback
The laboratory experiments need to have better videos.
Recommendation
Students informed that the overall quality of the laboratory videos should be improved if the unit is to be taught distance again next year. We will offer a face-to-face residential school for this unit in the next year.
Action Taken
Nil.
Source: Have your say
Feedback
Students enjoyed the subject materials and the overall structure of the unit.
Recommendation
Students reported that the structure of each week and the contents of the topic were clearly explained and laid out. The practice will continue in the future offering.
Action Taken
Nil.
Source: Have your say
Feedback
Student satisfaction for 'Assessment Tasks' has dropped a bit in comparison with the previous year.
Recommendation
The assessment tasks will be reviewed in the future offering.
Action Taken
Nil.
Unit learning Outcomes

On successful completion of this unit, you will be able to:

  1. Apply the fundamentals of fluid mechanics to investigate pressure, buoyancy and hydrostatic forces
  2. Analyse fluid motion by applying the conservation of mass and momentum in real-world engineering contexts
  3. Identify the fluid flow regimes to apply Bernoulli Equation in pipe flows
  4. Create solutions to fluid systems using similitude and modelling techniques
  5. Measure flow regimes, rates and other basic fluid flow characteristics and compare with analytical data
  6. Work autonomously and in teams to prepare reports using appropriate engineering language.

The Learning Outcomes for this unit are linked with the Engineers Australia Stage 1 Competency Standards for Professional Engineers in the areas of 1. Knowledge and Skill Base, 2. Engineering Application Ability and 3. Professional and Personal Attributes at the following levels:

Introductory
2.3 Application of systematic engineering synthesis and design processes. (LO: 1N 5N 6N )

Intermediate
1.4 Discernment of knowledge development and research directions within the engineering discipline. (LO: 1I 2I 3I 4I 5I 6I )
1.5 Knowledge of engineering design practice and contextual factors impacting the engineering discipline. (LO: 1N 4N 6I )
1.6 Understanding of the scope, principles, norms, accountabilities and bounds of sustainable engineering practice in the specific discipline. (LO: 1I 2I 3I 4I 6I )
2.2 Fluent application of engineering techniques, tools and resources. (LO: 1N 2N 3N 4I 5N 6I )
3.2 Effective oral and written communication in professional and lay domains. (LO: 1I 2I 5N 6I )
3.3 Creative, innovative and pro-active demeanour. (LO: 2N 4I 5I 6I )
3.4 Professional use and management of information. (LO: 1I 2I 3I 4I 5I 6I )
3.5 Orderly management of self, and professional conduct. (LO: 4I 6I )

Advanced
1.1 Comprehensive, theory-based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline. (LO: 1N 3I 4A 5A 6I )
1.2 Conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences which underpin the engineering discipline. (LO: 1I 2I 3I 4A 5A 6I )
1.3 In-depth understanding of specialist bodies of knowledge within the engineering discipline. (LO: 1I 2I 3I 4I 5I 6A )
2.1 Application of established engineering methods to complex engineering problem solving. (LO: 1I 2I 3I 4A 5A 6I )
3.1 Ethical conduct and professional accountability. (LO: 6A )
3.6 Effective team membership and team leadership. (LO: 6A )

Note: LO refers to the Learning Outcome number(s) which link to the competency and the levels: N – Introductory, I – Intermediate and A - Advanced.

Refer to the Engineering Undergraduate Course Moodle site for further information on the Engineers Australia's Stage 1 Competency Standard for Professional Engineers and course level mapping information
https://moodle.cqu.edu.au/course/view.php?id=1511

Alignment of Assessment Tasks to Learning Outcomes
Assessment Tasks Learning Outcomes
1 2 3 4 5 6
1 - Practical and Written Assessment
2 - Written Assessment
3 - Written Assessment
4 - Take Home Exam
Alignment of Graduate Attributes to Learning Outcomes
Introductory Level
Intermediate Level
Graduate Level
Graduate Attributes Learning Outcomes
1 2 3 4 5 6
1 - Communication
2 - Problem Solving
3 - Critical Thinking
4 - Information Literacy
5 - Team Work
6 - Information Technology Competence
8 - Ethical practice
Alignment of Assessment Tasks to Graduate Attributes
Introductory Level
Intermediate Level
Graduate Level
Assessment Tasks Graduate Attributes
1 2 3 4 5 6 7 8 9
1 - Practical and Written Assessment
2 - Written Assessment
3 - Written Assessment
4 - Take Home Exam