ENTM12006 - Industrial Fluid Power

General Information

Unit Synopsis

This unit will teach students about designing fluid power systems for automated and semi-automated industrial plants. You will be exploring fluid power elements and their ISO standard symbols, designing fluid power circuits using hydraulic and pneumatic actuators, power sources, directional control and other control valves, sensors and control systems. Control technology may include both hydraulic and pneumatic systems integrated with programmable controllers (PLCs and micro-controllers). During the mandatory residential school you will attain, in team, hands-on skills in automation circuit design experiencing several laboratory experiments in areas of hydraulic and pneumatic operating system design and control circuit design integrated with PLCs for automated machines. Simulation systems like SimScape and FluidSim may be applied for confirming the functionality of your designed projects. You will communicate professionally using discipline-specific terminology to present designs and problem solutions accomplishing a Student Portfolio. Relevant problem solving, technical reports on projects and laboratory experiments are the formative assessment items during the Term. Online students are required to have access to a computer and internet to make frequent use of the Unit Moodle.

Details

Level Undergraduate
Unit Level 2
Credit Points 6
Student Contribution Band 2
Fraction of Full-Time Student Load 0.125
Pre-requisites or Co-requisites

Prereq: ENAG11002 Energy & Electricity or ENEG11009 Fundamentals of Energy & Electricity or PHYS11185 Engineering Physics B

Important note: Students enrolled in a subsequent unit who failed their pre-requisite unit, should drop the subsequent unit before the census date or within 10 working days of Fail grade notification. Students who do not drop the unit in this timeframe cannot later drop the unit without academic and financial liability. See details in the Assessment Policy and Procedure (Higher Education Coursework).

Class Timetable View Unit Timetable
Residential School Compulsory Residential School
View Unit Residential School

Unit Availabilities from Term 2 - 2020

Term 1 - 2021 Profile
Mixed Mode

Attendance Requirements

All on-campus students are expected to attend scheduled classes – in some units, these classes are identified as a mandatory (pass/fail) component and attendance is compulsory. International students, on a student visa, must maintain a full time study load and meet both attendance and academic progress requirements in each study period (satisfactory attendance for International students is defined as maintaining at least an 80% attendance record).

Assessment Overview

Recommended Student Time Commitment

Each 6-credit Undergraduate unit at CQUniversity requires an overall time commitment of an average of 12.5 hours of study per week, making a total of 150 hours for the unit.

Assessment Tasks

Assessment Task Weighting
1. Written Assessment 30%
2. Written Assessment 40%
3. Laboratory/Practical 30%
4. Written Assessment 0%

This is a graded unit: your overall grade will be calculated from the marks or grades for each assessment task, based on the relative weightings shown in the table above. You must obtain an overall mark for the unit of at least 50%, or an overall grade of ‘pass’ in order to pass the unit. If any ‘pass/fail’ tasks are shown in the table above they must also be completed successfully (‘pass’ grade). You must also meet any minimum mark requirements specified for a particular assessment task, as detailed in the ‘assessment task’ section (note that in some instances, the minimum mark for a task may be greater than 50%).

Consult the University’s Grades and Results Policy for more details of interim results and final grades

Past Exams

To view Past Exams, please login
Previous Feedback

Term 1 - 2018 : The overall satisfaction for students in the last offering of this course was 4.3 (on a 5 point Likert scale), based on a 57.14% response rate.

Feedback, Recommendations and Responses

Every unit is reviewed for enhancement each year. At the most recent review, the following staff and student feedback items were identified and recommendations were made.

Source: Moodle Student Feedback
Feedback
Students indicated that the study materials were clearly articulated and easy to follow.
Recommendation
The practice of providing clear and concise learning materials correlating with the textbook will be continued.
Action Taken
Students provided with clear and concise learning resources throughout the term.
Source: Moodle Student Feedback
Feedback
The Moodle site was easy to find and navigate.
Recommendation
Considering the positive feedback from the students, a similar format of the Moodle site will be followed in the future delivery.
Action Taken
A well structured Moodle site was made available to the students.
Source: Moodle Survey
Feedback
Positive feedback was received on the resource materials provided in the unit. Students liked the relevance of the subject contents in the industry.
Recommendation
Future students will be supported by similar resources.
Action Taken
Nil.
Source: Moodle Survey
Feedback
Students expressed overall satisfaction on the method of delivery of the unit.
Recommendation
The practice will continue in future.
Action Taken
Nil.
Source: Moodle Survey
Feedback
Improvement of assessment return process.
Recommendation
The assessment return process will be improved with a follow-up email to the students advising that the assessment items were marked.
Action Taken
Nil.
Unit learning Outcomes

On successful completion of this unit, you will be able to:

  1. Explain and analyse the design and working principles of fluid power system elements
  2. Select appropriate sizes of fluid power components to achieve functional objectives of fluid machineries
  3. Design suitable pressure control to protect circuit components and to minimise energy loss for sustainability
  4. Design and draw simple pneumatic/hydraulic circuits for automation of machine systems
  5. Work, learn and communicate in an ethical, professional manner individually and collaboratively, using information literacy skills to investigate problems and present solutions.

Learning outcomes are linked to Engineers Australia Stage 1 Competencies and also discipline capabilities.

Alignment of Assessment Tasks to Learning Outcomes
Assessment Tasks Learning Outcomes
1 2 3 4 5
1 - Written Assessment
2 - Written Assessment
3 - Laboratory/Practical
4 - Written Assessment
Alignment of Graduate Attributes to Learning Outcomes
Introductory Level
Intermediate Level
Graduate Level
Graduate Attributes Learning Outcomes
1 2 3 4 5
1 - Communication
2 - Problem Solving
3 - Critical Thinking
4 - Information Literacy
5 - Team Work
6 - Information Technology Competence
8 - Ethical practice
Alignment of Assessment Tasks to Graduate Attributes
Introductory Level
Intermediate Level
Graduate Level
Assessment Tasks Graduate Attributes
1 2 3 4 5 6 7 8 9
1 - Written Assessment
2 - Written Assessment
3 - Laboratory/Practical
4 - Written Assessment