CQUniversity Unit Profile

In Progress

Please note that this Unit Profile is still in progress. The content below is subject to change.
ENEX13002 Power Electronics
Power Electronics
All details in this unit profile for ENEX13002 have been officially approved by CQUniversity and represent a learning partnership between the University and you (our student).
The information will not be changed unless absolutely necessary and any change will be clearly indicated by an approved correction included in the profile.
General Information

Overview

In this unit, you will build on your electronics knowledge previously acquired. You will learn more about power semiconductor devices and their modeling, such as diodes, silicon-controlled rectifiers (SCRs), metal oxide silicon field effect transistors (MOSFETs), and isolated gate bipolar junction transistors (IGBTs), including their theory of operation and limitations. You will also learn to calculate thermal dissipation requirements of power semiconductors and to choose suitable heat sinks. You will be introduced to the concepts of alternating current (AC) to direct current (DC), AC to AC, DC to DC, and DC to AC converters. You will analyse circuits and it's waveforms using Fourier analysis. You will also review different types of motors and learn about their drives and control, including DC motor drives and AC motor drives. You will learn to design/develop power electronics solutions and test them by simulation and prototyping in the lab. In this unit, you must complete compulsory practical activities. Refer to the Engineering Undergraduate Course Moodle site for proposed dates.

Details

Career Level: Undergraduate
Unit Level: Level 3
Credit Points: 6
Student Contribution Band: 8
Fraction of Full-Time Student Load: 0.125

Pre-requisites or Co-requisites

Prerequisites: (ENEX12002 Introductory Electronics OR ENEE13018 Analogue Electronics) AND (ENEX12001 Electrical Power and Machines OR ENEE12015 Electrical Power Engineering) ENEE12015 Electrical Power Engineering may be studied as a co-requisite.

Important note: Students enrolled in a subsequent unit who failed their pre-requisite unit, should drop the subsequent unit before the census date or within 10 working days of Fail grade notification. Students who do not drop the unit in this timeframe cannot later drop the unit without academic and financial liability. See details in the Assessment Policy and Procedure (Higher Education Coursework).

Offerings For Term 2 - 2023

Bundaberg
Cairns
Gladstone
Mackay
Mixed Mode
Rockhampton

Attendance Requirements

All on-campus students are expected to attend scheduled classes – in some units, these classes are identified as a mandatory (pass/fail) component and attendance is compulsory. International students, on a student visa, must maintain a full time study load and meet both attendance and academic progress requirements in each study period (satisfactory attendance for International students is defined as maintaining at least an 80% attendance record).

Residential Schools

This unit has a Compulsory Residential School for distance mode students and the details are:
Click here to see your Residential School Timetable.

Class and Assessment Overview

Recommended Student Time Commitment

Each 6-credit Undergraduate unit at CQUniversity requires an overall time commitment of an average of 12.5 hours of study per week, making a total of 150 hours for the unit.

Class Timetable

Bundaberg, Cairns, Emerald, Gladstone, Mackay, Rockhampton, Townsville
Adelaide, Brisbane, Melbourne, Perth, Sydney

Assessment Overview

Assessment Grading

This is a graded unit: your overall grade will be calculated from the marks or grades for each assessment task, based on the relative weightings shown in the table above. You must obtain an overall mark for the unit of at least 50%, or an overall grade of ‘pass’ in order to pass the unit. If any ‘pass/fail’ tasks are shown in the table above they must also be completed successfully (‘pass’ grade). You must also meet any minimum mark requirements specified for a particular assessment task, as detailed in the ‘assessment task’ section (note that in some instances, the minimum mark for a task may be greater than 50%). Consult the University’s Grades and Results Policy for more details of interim results and final grades.

Previous Student Feedback

Feedback, Recommendations and Responses

Every unit is reviewed for enhancement each year. At the most recent review, the following staff and student feedback items were identified and recommendations were made.

Feedback from Unit Evaluation and verbally at Res School

Feedback

Residential School activities were appreciated and enjoyed.

Recommendation

Keep refining and enhancing the Laboratory work done at the Residential school.

Feedback from Unit Evaluation

Feedback

Students felt that the Exam was a challenge and had too many questions/marks for the given time frame.

Recommendation

Investigate and adapt the structure of future exam paper questions.

Feedback from Unit Evaluation

Feedback

Students felt that they learned a lot from the assessment tasks.

Recommendation

Keep current approach and set practical design assessments.

Unit Learning Outcomes
On successful completion of this unit, you will be able to:
  1. Explain the construction of power semiconductor devices, their principle of operation, and their suitability for various switching functions
  2. Model power electronic devices for accurate circuit analysis, including their thermal performance
  3. Analyse and model the operation of single-phase and three-phase power electronic circuits, including alternating current (AC) to direct current (DC), AC to AC, DC to DC, and DC to AC topologies
  4. Compare and select power electronic components, converters, and drives for electromechanical/mechatronic systems
  5. Analyse and design variable speed motor drives and controllers for different types of electric motors and evaluate their performances
  6. Solve real-life problems and communicate professionally using power electronics terminology
  7. Work collaboratively and autonomously and communicate professionally in presenting your solutions.

The Learning Outcomes for this unit are linked with the Engineers Australia Stage 1 Competency Standards for Professional Engineers in the areas of 1. Knowledge and Skill Base, 2. Engineering Application Ability and 3. Professional and Personal Attributes at the following levels:

Intermediate
1.1 Comprehensive, theory-based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline. (LO: 1N 2I 3I 5I )
1.4 Discernment of knowledge development and research directions within the engineering discipline. (LO: 1N 3I 4N 5N 6I )
2.1 Application of established engineering methods to complex engineering problem-solving. (LO: 2I 3I 5I )
2.4 Application of systematic approaches to the conduct and management of engineering projects. (LO: 4N 6I )
3.1 Ethical conduct and professional accountability. (LO: 2I 3I 7N )
3.3 Creative, innovative and pro-active demeanour. (LO: 5I )
3.5 Orderly management of self, and professional conduct. (LO: 6I )
3.6 Effective team membership and team leadership. (LO: 1N 6I 7I )

Advanced
1.2 Conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences which underpin the engineering discipline. (LO: 2A 3A 5I 6I )
1.3 In-depth understanding of specialist bodies of knowledge within the engineering discipline. (LO: 1N 2A 3A 5I 6I )
1.5 Knowledge of engineering design practice and contextual factors impacting the engineering discipline. (LO: 3I 4N 6A )
1.6 Understanding of the scope, principles, norms, accountabilities and bounds of sustainable engineering practice in the specific discipline. (LO: 2A 4N 6N )
2.2 Fluent application of engineering techniques, tools and resources. (LO: 2I 3A 6A )
2.3 Application of systematic engineering synthesis and design processes. (LO: 2I 3I 5A )
3.2 Effective oral and written communication in professional and lay domains. (LO: 1N 6A 7I )
3.4 Professional use and management of information. (LO: 1N 4N 6A )

Note: LO refers to the Learning Outcome number(s) which link to the competency and the levels: N – Introductory, I – Intermediate and A - Advanced.

Refer to the Engineering Undergraduate Course Moodle site for further information on the Engineers Australia's Stage 1 Competency Standard for Professional Engineers and course level mapping information
https://moodle.cqu.edu.au/course/view.php?id=1511

Alignment of Learning Outcomes, Assessment and Graduate Attributes
N/A Level
Introductory Level
Intermediate Level
Graduate Level
Professional Level
Advanced Level

Alignment of Assessment Tasks to Learning Outcomes

Assessment Tasks Learning Outcomes
1 2 3 4 5 6 7
1 - Written Assessment - 20%
2 - Written Assessment - 20%
3 - Practical and Written Assessment - 20%
4 - Online Test - 40%

Alignment of Graduate Attributes to Learning Outcomes

Graduate Attributes Learning Outcomes
1 2 3 4 5 6 7
1 - Communication
2 - Problem Solving
3 - Critical Thinking
4 - Information Literacy
5 - Team Work
6 - Information Technology Competence
7 - Cross Cultural Competence
8 - Ethical practice
9 - Social Innovation
10 - Aboriginal and Torres Strait Islander Cultures
Textbooks and Resources

Textbooks

Prescribed

Power Electronics Devices, Circuits, and Applications

4th Edition (International) (2014)
Authors: Muhammad H. Rashid
Pearson Education Ltd.
Harlaw Harlaw , Essex , England
ISBN: 978-0-273-76908-8
Binding: Paperback

Additional Textbook Information

Hardcopy or eBook of the 4th edition would be suitable.

IT Resources

You will need access to the following IT resources:
Academic Integrity Statement

Information for Academic Integrity Statement has not been released yet.

This unit profile has not yet been finalised.