ENEX13003 - Design of Mechatronics Elements

General Information

Unit Synopsis

This unit will introduce you to the basics of mechatronics and machine design, including the design process, engineering mechanics and materials, failure prevention, and characteristics of the principal elements. You will develop an understanding of standard drawings in the communication and definition of parts and assemblies in accordance with Australian Standards. In this unit, you will also learn and apply Autodesk Inventor software or equivalent for drafting and design activities.

Details

Level Undergraduate
Unit Level 3
Credit Points 6
Student Contribution Band SCA Band 2
Fraction of Full-Time Student Load 0.125
Pre-requisites or Co-requisites
Prerequisites: ENEG11005: Fundamentals of Professional Engineering and ENEG11008: Materials for Engineers

Important note: Students enrolled in a subsequent unit who failed their pre-requisite unit, should drop the subsequent unit before the census date or within 10 working days of Fail grade notification. Students who do not drop the unit in this timeframe cannot later drop the unit without academic and financial liability. See details in the Assessment Policy and Procedure (Higher Education Coursework).

Class Timetable View Unit Timetable
Residential School No Residential School

Unit Availabilities from Term 1 - 2023

Term 2 - 2023 Profile
Mackay
Online

Attendance Requirements

All on-campus students are expected to attend scheduled classes – in some units, these classes are identified as a mandatory (pass/fail) component and attendance is compulsory. International students, on a student visa, must maintain a full time study load and meet both attendance and academic progress requirements in each study period (satisfactory attendance for International students is defined as maintaining at least an 80% attendance record).

Assessment Overview

Recommended Student Time Commitment

Each 6-credit Undergraduate unit at CQUniversity requires an overall time commitment of an average of 12.5 hours of study per week, making a total of 150 hours for the unit.

Assessment Tasks

Assessment Task Weighting
1. Written Assessment 25%
2. Written Assessment 35%
3. Online Test 40%

This is a graded unit: your overall grade will be calculated from the marks or grades for each assessment task, based on the relative weightings shown in the table above. You must obtain an overall mark for the unit of at least 50%, or an overall grade of ‘pass’ in order to pass the unit. If any ‘pass/fail’ tasks are shown in the table above they must also be completed successfully (‘pass’ grade). You must also meet any minimum mark requirements specified for a particular assessment task, as detailed in the ‘assessment task’ section (note that in some instances, the minimum mark for a task may be greater than 50%).

Consult the University’s Grades and Results Policy for more details of interim results and final grades

Past Exams

To view Past Exams, please login
Previous Feedback

Term 2 - 2021 : The overall satisfaction for students in the last offering of this course was 5 (on a 5 point Likert scale), based on a 66.67% response rate.

Feedback, Recommendations and Responses

Every unit is reviewed for enhancement each year. At the most recent review, the following staff and student feedback items were identified and recommendations were made.

Source: Students' teaching comments
Feedback
Students appreciated the bi-weekly follow-up sessions so that they could clarify questions as progressing.
Recommendation
The Unit Coordinator will make an effort to keep the level of interactions high.
Action Taken
Previous bi-weekly sessions were replaced by live lectures and tutorials for better interactions.
Source: Student Unit and Teaching Evaluation
Feedback
Students felt lacking in interactions with lectures and tutorials delivered in recordings.
Recommendation
The lectures and tutorials will be delivered live in Term 2, 2021 to enhance students' engagement and interactions.
Action Taken
Lectures and tutorials were revised and delivered with newer materials to make sure a high level of interactions.
Source: Student Unit and Teaching Evaluation
Feedback
Students found assessment feedback was helpful and provided in a timely manner so that they were able to consolidate their understanding.
Recommendation
The Unit Coordinator will strive to provide the best possible feedback on students' assessment items for a better student learning experience.
Action Taken
An effort was made to provide timely and helpful feedback for students' assessment items.
Source: Self reflection
Feedback
Students could easily get lost for some of the design processes due to their tediousness.
Recommendation
The Unit Coordinator will make an effort to develop more intuitive ways for students to learn the design process of machine elements.
Action Taken
With revised lecture and tutorial materials, the unit coordinator has made significant changes to clarify the design processes.
Source: Unit evaluation
Feedback
Students praised the clearness of lecture/tutorial materials and explicit explanations in the class.
Recommendation
The unit coordinator will keep making an effort to help students gain a thorough understanding of the contents.
Action Taken
Nil.
Source: Unit evaluation
Feedback
Students pointed out that 3D modelling with stress analysis was useful and introduced well with various materials.
Recommendation
More step-by-step videos on 3D modelling and technical drawings will be provided. Furthermore, the unit coordinator will endeavour to provide more extensive materials for 3D modelling and technical drawings.
Action Taken
Nil.
Source: Unit evaluation
Feedback
Students felt the content for the 3D CAD part was heavy in the current time frame. It was suggested that 3D modelling using Inventor could be introduced from Week 1.
Recommendation
With the new unit content, the 3D CAD components within the unit will become the main part of this unit so that 3D CAD will be introduced from the beginning and more time will be allocated.
Action Taken
Nil.
Unit learning Outcomes

On successful completion of this unit, you will be able to:

  1. Interpret technical drawings to ensure effective communication and minimum manufacturing error
  2. Use common Computer-Aided Design (CAD) software to create a range of engineering components and their production drawings complying with Australian Standards
  3. Apply analytical and numerical approaches to perform load, stress, and deflection analysis under static and variable loadings
  4. Identify suitable machine and mechatronics elements from manufacturers' catalogues
  5. Develop reporting skills to present design concepts effectively and professionally using suitable engineering terminology, symbols, and diagrams that conform to Australian Standards.

The Learning Outcomes for this unit are linked with the Engineers Australia Stage 1 Competency Standards for Professional Engineers in the areas of 1. Knowledge and Skill Base, 2. Engineering Application Ability and 3. Professional and Personal Attributes at the following levels:

Intermediate
2.4 Application of systematic approaches to the conduct and management of engineering projects. (LO: 3I 5I )
3.3 Creative, innovative and pro-active demeanour. (LO: 5I )
Advanced
1.1 Comprehensive, theory-based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline. (LO: 1A )
1.2 Conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences which underpin the engineering discipline. (LO: 1A 3A 4A )
1.3 In-depth understanding of specialist bodies of knowledge within the engineering discipline. (LO: 1A 2I 3A 4A 5A )
1.4 Discernment of knowledge development and research directions within the engineering discipline. (LO: 1A 2I 3I 4A )
1.5 Knowledge of engineering design practice and contextual factors impacting the engineering discipline. (LO: 1A 2A 3I 4A )
1.6 Understanding of the scope, principles, norms, accountabilities and bounds of sustainable engineering practice in the specific discipline. (LO: 1I 2A 3I 4A 5I )
2.1 Application of established engineering methods to complex engineering problem solving. (LO: 3A 4A 5A )
2.2 Fluent application of engineering techniques, tools and resources. (LO: 2A 4I 5I )
2.3 Application of systematic engineering synthesis and design processes. (LO: 1I 2I 3A 4A 5I )
3.2 Effective oral and written communication in professional and lay domains. (LO: 5A )
3.4 Professional use and management of information. (LO: 5A )

Note: LO refers to the Learning Outcome number(s) which link to the competency and the levels: N – Introductory, I – Intermediate and A - Advanced.
Refer to the Engineering Undergraduate Course Moodle site for further information on the Engineers Australia's Stage 1 Competency Standard for Professional Engineers and course level mapping information https://moodle.cqu.edu.au/course/view.php?id=1511

Alignment of Assessment Tasks to Learning Outcomes
Assessment Tasks Learning Outcomes
1 2 3 4 5
1 - Written Assessment
2 - Written Assessment
3 - Online Test
Alignment of Graduate Attributes to Learning Outcomes
Introductory Level
Intermediate Level
Graduate Level
Graduate Attributes Learning Outcomes
1 2 3 4 5
1 - Communication
2 - Problem Solving
3 - Critical Thinking
4 - Information Literacy
6 - Information Technology Competence
8 - Ethical practice
Alignment of Assessment Tasks to Graduate Attributes
Introductory Level
Intermediate Level
Graduate Level
Assessment Tasks Graduate Attributes
1 2 3 4 5 6 7 8 9 10