MEDI12007 - Quality Processes for Dose and Image Optimisation

General Information

Unit Synopsis

You will apply knowledge of equipment operation and use as well as radiographic image acquisition techniques to the optimisation of radiographic images and patient dose. You will apply the concepts of quality control testing and quality assurance to monitor equipment performance, detect performance issues, document findings and determine corrective action. You will consider imaging quality processes in the larger context of facility quality management and compliance with external standards. You will investigate the impact of technical factor selection on patient dose and image quality. Through these you will learn to make informed selections and modifications of technical parameters for radiographic procedures and to justify your decision-making.

Details

Level Undergraduate
Unit Level 2
Credit Points 6
Student Contribution Band SCA Band 2
Fraction of Full-Time Student Load 0.125
Pre-requisites or Co-requisites

Pre-requisites:

MEDI12001 Radiation Science

MEDI12002 Science and Instrumentation 1

MEDI12005 Science & Instrumentation 2

Co-requisite:

MEDI12004 Medical Imaging Clinical Placement 1

Important note: Students enrolled in a subsequent unit who failed their pre-requisite unit, should drop the subsequent unit before the census date or within 10 working days of Fail grade notification. Students who do not drop the unit in this timeframe cannot later drop the unit without academic and financial liability. See details in the Assessment Policy and Procedure (Higher Education Coursework).

Class Timetable View Unit Timetable
Residential School Compulsory Residential School
View Unit Residential School

Unit Availabilities from Term 1 - 2024

Term 3 - 2024 Profile
Mixed Mode

Attendance Requirements

All on-campus students are expected to attend scheduled classes – in some units, these classes are identified as a mandatory (pass/fail) component and attendance is compulsory. International students, on a student visa, must maintain a full time study load and meet both attendance and academic progress requirements in each study period (satisfactory attendance for International students is defined as maintaining at least an 80% attendance record).

Assessment Overview

Recommended Student Time Commitment

Each 6-credit Undergraduate unit at CQUniversity requires an overall time commitment of an average of 12.5 hours of study per week, making a total of 150 hours for the unit.

Assessment Tasks

Assessment Task Weighting
1. On-campus Activity 0%
2. In-class Test(s) 20%
3. Practical and Written Assessment 30%
4. Online Test 50%

This is a graded unit: your overall grade will be calculated from the marks or grades for each assessment task, based on the relative weightings shown in the table above. You must obtain an overall mark for the unit of at least 50%, or an overall grade of ‘pass’ in order to pass the unit. If any ‘pass/fail’ tasks are shown in the table above they must also be completed successfully (‘pass’ grade). You must also meet any minimum mark requirements specified for a particular assessment task, as detailed in the ‘assessment task’ section (note that in some instances, the minimum mark for a task may be greater than 50%).

Consult the University’s Grades and Results Policy for more details of interim results and final grades

Past Exams

To view Past Exams,
please login
Previous Feedback

Term 3 - 2021 : The overall satisfaction for students in the last offering of this course was 66.67% (`Agree` and `Strongly Agree` responses), based on a 13.64% response rate.

Feedback, Recommendations and Responses

Every unit is reviewed for enhancement each year. At the most recent review, the following staff and student feedback items were identified and recommendations were made.

Source: Have your say Unit Coordinator self reflection
Feedback
The availability of shorter lecture videos have been well received by students.
Recommendation
Maintain the availability of shorter lecture video recordings for future iterations of the unit.
Action Taken
Availability of shorter lecture videos has been maintained.
Source: Have your say Unit Coordinator self reflection
Feedback
Some students needed further assistance with understanding the assessment requirements and scoring.
Recommendation
Update the instructional video describing the assessment tasks to include examples of poor and good approaches with respect to the marking rubric to encourage better understanding of the assessment requirements and marking rubric(s) by the students.
Action Taken
An instructional video for assessments was not used for 2021. Instead, including the assessment data collection and analysis as part of the res school activity under the unit coordinator's guidance helped students better understand the requirements for and execute the first assessment. Incorporating assessment type questions in the weekly tutorials also gave students insight about expectations and scoring of responses in preparation for the final online test.
Source: Unit Coordinator self-reflection Informal feedback from students
Feedback
The 3-day residential school was well received by students.
Recommendation
Retain the 3-day res school to support students with integration of the theory and application of concepts in future iterations of the unit.
Action Taken
Nil.
Source: Unit Coordinator self-reflection Informal feedback from students SUTE feedback
Feedback
Having application type questions in the weekly tutorials supported student learning and consolidation of the key concepts learned.
Recommendation
Continue the adaptation of application type questions in the review and consolidation of content in the weekly tutorials.
Action Taken
Nil.
Unit learning Outcomes

On successful completion of this unit, you will be able to:

  1. Assess the performance of radiographic, fluoroscopic and ancillary equipment relative to quality standards.
  2. Troubleshoot imaging faults and equipment problems
  3. Apply metrics of image quality to describe and evaluate visibility and accuracy of structures demonstrated on radiographic images
  4. Relate radiographic equipment performance and the selection of image acquisition and processing parameters to patient dose and image quality
  5. Critically appraise evidence to inform decision-making in technical parameter selection to address dose and image optimisation
  6. Discuss the interconnections of imaging quality control, dose management, departmental quality management and compliance with external quality and safety standards for clinical imaging facilities.

The unit links to the following Professional Capabilities for Medical Radiation Practitioners as detailed by the Medical Radiation Practice Board of Australia (effective March 2020):

Domain 1A Diagnostic radiographer:

  • 1. Perform projection radiography examinations in a range of settings.
    • a. Operate projection radiography systems safely and effectively in a range of settings
    • c. Use standard radiographic projections and exposure factors for the patient's/client's body area being examined and, when appropriate, modify them to consider patient/client presentation, clincal indications and mechanisms of injury
    • f. Critically evaluate images against radiographic criteria including assessment of exposure index, field of view and anatomical rotation
    • g. Collaborate in the design and evaluation of projection radiography protocols.

Domain 2: Professional and ethical practitioner:

  • 3. Take responsibility and accountability for professional decisions.
    • c. Integrate organisational policies and guidelines with professional standards and apply to practice.

Domain 4: Evidence-informed practitioner:

  • 1. Resolve challenges through application of critical thinking and reflective practice
    • a. Identify the challenge or question and the information that is needed to respond
    • b. Find, critically appraise, interpret and apply best available research evidence to inform clinical reasoning and professional decision-making

Domain 5: Radiation safety and risk manager:

  • 1. Perform and provide safe radiation practice
    • a. Comply with relevant radiation safety legislation
  • 3. Implement quality assurance processes imaging or treating patients/clients
    • a. Check and confirm that all equipment is in good order and operating within acceptable parameters
    • b. Follow protocols to record details of all routine equipment checks
    • c. Identify and take appropriate action to correct unacceptable condition or operation of all equipment
    • d. Follow protocols to record and report non-conformance of all equipment.

Alignment of Assessment Tasks to Learning Outcomes
Assessment Tasks Learning Outcomes
1 2 3 4 5 6
1 - On-campus Activity
2 - In-class Test(s)
3 - Practical and Written Assessment
4 - Online Test
Alignment of Graduate Attributes to Learning Outcomes
Introductory Level
Intermediate Level
Graduate Level
Graduate Attributes Learning Outcomes
1 2 3 4 5 6
1 - Communication
2 - Problem Solving
3 - Critical Thinking
4 - Information Literacy
6 - Information Technology Competence
8 - Ethical practice
Alignment of Assessment Tasks to Graduate Attributes
Introductory Level
Intermediate Level
Graduate Level
Assessment Tasks Graduate Attributes
1 2 3 4 5 6 7 8 9 10