COIT20257 - Distributed Systems: Principles and Development

General Information

Unit Synopsis

Distributed Systems: Principles and Development you will learn basic principles of distributed systems including architecture, design, and algorithms and how to use these principles in the development of distributed applications. You will explore the significant distributed system characteristics of scalability, heterogeneity, security, and failure handling in addition to the fundamentals of networking, inter-process communication, remote invocation, and operating system support. You will examine different approaches to supporting distributed applications including distributed objects, web services, and peer-to-peer solutions. You will learn about distributed file systems, naming, and data-related aspects of distributed transactions, and data replication. Algorithms associated to timing, and coordination and agreement will also be studied. You will also analyse the areas of mobile and ubiquitous computing and the social impact arising from the ubiquity of distributed systems. You will consolidate the key theoretical material through the computer lab tutorial sessions and development of software applications.

Details

Level Postgraduate
Unit Level 9
Credit Points 6
Student Contribution Band SCA Band 2
Fraction of Full-Time Student Load 0.125
Pre-requisites or Co-requisites

Prerequisite unit: COIT20256 Data structures and Algorithms

Anti-Requisite unit: COIT23005 Distributed Systems

Important note: Students enrolled in a subsequent unit who failed their pre-requisite unit, should drop the subsequent unit before the census date or within 10 working days of Fail grade notification. Students who do not drop the unit in this timeframe cannot later drop the unit without academic and financial liability. See details in the Assessment Policy and Procedure (Higher Education Coursework).

Class Timetable View Unit Timetable
Residential School No Residential School

Unit Availabilities from Term 2 - 2024

Term 2 - 2024 Profile
Brisbane
Melbourne
Online
Rockhampton
Sydney
Term 3 - 2024 Profile
Brisbane
Melbourne
Online
Sydney

Attendance Requirements

All on-campus students are expected to attend scheduled classes – in some units, these classes are identified as a mandatory (pass/fail) component and attendance is compulsory. International students, on a student visa, must maintain a full time study load and meet both attendance and academic progress requirements in each study period (satisfactory attendance for International students is defined as maintaining at least an 80% attendance record).

Assessment Overview

Recommended Student Time Commitment

Each 6-credit Postgraduate unit at CQUniversity requires an overall time commitment of an average of 12.5 hours of study per week, making a total of 150 hours for the unit.

Assessment Tasks

This information will not be available until 8 weeks before term.
To see assessment details from an earlier availability, please search via a previous term.

This is a graded unit: your overall grade will be calculated from the marks or grades for each assessment task, based on the relative weightings shown in the table above. You must obtain an overall mark for the unit of at least 50%, or an overall grade of ‘pass’ in order to pass the unit. If any ‘pass/fail’ tasks are shown in the table above they must also be completed successfully (‘pass’ grade). You must also meet any minimum mark requirements specified for a particular assessment task, as detailed in the ‘assessment task’ section (note that in some instances, the minimum mark for a task may be greater than 50%).

Consult the University’s Grades and Results Policy for more details of interim results and final grades

Past Exams

To view Past Exams,
please login
Previous Feedback

Term 1 - 2023 : The overall satisfaction for students in the last offering of this course was 100.00% (`Agree` and `Strongly Agree` responses), based on a 21.88% response rate.

Feedback, Recommendations and Responses

Every unit is reviewed for enhancement each year. At the most recent review, the following staff and student feedback items were identified and recommendations were made.

Source: Coordinator reflection
Feedback
Students cover the concepts of distributed system security, but do not get sufficient programming practice
Recommendation
Introduce programming components for digital certificate and symmetric and asymmetric encryption; enhance distributed system security by developing a secured distributed system for assessment.
Action Taken
This recommendation has been implemented by the redevelopment of the Week 5 lecture and tutorials. Students now can practice security components in distributed environments by lab tasks. The contents have been assessed by Assignment 2.
Source: Coordinator reflection
Feedback
Not enough depth in concurrency control, so difficult for students to apply
Recommendation
Introduce more programming components e.g. thread safety and synchronisation to apply concurrency control to cope with data inconsistency problems for constructing distributed systems.
Action Taken
This recommendation has been implemented by the redevelopment of the Week 10 lecture and tutorials. Students now can practice thread syhchronisation by lab tasks. The contents have been assessed by Assignment 3.
Source: UC self reflection and teaching team feedback
Feedback
Students need a comprehensive and complex case study to synthesise the concepts, models and architecture that are covered by the unit.
Recommendation
Combine Transactions and Distributed Transactions to a single week. Then a week space can leave to introduce social computing networks by a comprehensive and complex distributed case study (e.g. secured chat systems).
Action Taken
Nil.
Source: UC self reflection and teaching team feedback
Feedback
Lack or not enough depth in advanced Java programming.
Recommendation
Introduce or strengthen Java interfaces, object serialization and streaming, Java generics and multithreading to handle distributed interaction and modelling.
Action Taken
Nil.
Source: UC self reflection and teaching team feedback
Feedback
Involving more students for unit evaluation.
Recommendation
1. In Week 1 and 6 Lectures: clearly explain to students why teaching evaluations are important to the improvement of the unit and helps instructors enhance their teaching methods. 2. In Week 10 Lecture and Tutorial: encourage class discussions about the importance of feedback and improvements. Lead discussions on the topic and involve students in brainstorming ways to enhance the unit.
Action Taken
Nil.
Unit learning Outcomes
This information will not be available until 8 weeks before term.
To see Learning Outcomes from an earlier availability, please search via a previous term.