MATH11219 - Applied Calculus

General Information

Unit Synopsis

In this unit, you will apply the essential calculus concepts, processes, and techniques to develop mathematical models for science and engineering problems. You will use the Fundamental Theorem of Calculus to illustrate the relationship between the derivative and the integral of a function. The theorem will also be applied to problems involving definite integrals. Differential calculus will be used to construct mathematical models that investigate a variety of rate-of-change and optimisation problems. You will learn how to apply the standard rules and techniques of integration. Science and engineering disciplinary problems will be investigated through the use of differential equations. Other important elements of this unit are the communication of results, concepts, and ideas using mathematics as a language. Mathematical software will also be used to visualise, analyse, validate, and solve problems studied in the unit.

Details

Level Undergraduate
Unit Level 1
Credit Points 6
Student Contribution Band 2
Fraction of Full-Time Student Load 0.125
Pre-requisites or Co-requisites

Prerequisite: MATH11218

Anti-requisite: MATH12223 or MATH12224

Important note: Students enrolled in a subsequent unit who failed their pre-requisite unit, should drop the subsequent unit before the census date or within 10 working days of Fail grade notification. Students who do not drop the unit in this timeframe cannot later drop the unit without academic and financial liability. See details in the Assessment Policy and Procedure (Higher Education Coursework).

Class Timetable View Unit Timetable
Residential School No Residential School

Unit Availabilities from Term 3 - 2020

Term 3 - 2020 Profile
Online
Rockhampton
Term 2 - 2021 Profile
Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton
Term 3 - 2021 Profile
Online
Rockhampton

Attendance Requirements

All on-campus students are expected to attend scheduled classes – in some units, these classes are identified as a mandatory (pass/fail) component and attendance is compulsory. International students, on a student visa, must maintain a full time study load and meet both attendance and academic progress requirements in each study period (satisfactory attendance for International students is defined as maintaining at least an 80% attendance record).

Assessment Overview

Recommended Student Time Commitment

Each 6-credit Undergraduate unit at CQUniversity requires an overall time commitment of an average of 12.5 hours of study per week, making a total of 150 hours for the unit.

Assessment Tasks

Assessment Task Weighting
1. Written Assessment 20%
2. Written Assessment 20%
3. Take Home Exam 60%

This is a graded unit: your overall grade will be calculated from the marks or grades for each assessment task, based on the relative weightings shown in the table above. You must obtain an overall mark for the unit of at least 50%, or an overall grade of ‘pass’ in order to pass the unit. If any ‘pass/fail’ tasks are shown in the table above they must also be completed successfully (‘pass’ grade). You must also meet any minimum mark requirements specified for a particular assessment task, as detailed in the ‘assessment task’ section (note that in some instances, the minimum mark for a task may be greater than 50%).

Consult the University’s Grades and Results Policy for more details of interim results and final grades

Past Exams

To view Past Exams, please login
Previous Feedback

Term 2 - 2019 : The overall satisfaction for students in the last offering of this course was 4.6 (on a 5 point Likert scale), based on a 28.99% response rate.

Feedback, Recommendations and Responses

Every unit is reviewed for enhancement each year. At the most recent review, the following staff and student feedback items were identified and recommendations were made.

Source: Engineering program committee.
Feedback
Embed additional applied engineering disciplinary examples in the unit.
Recommendation
Liaise with the engineering discipline leads for additional applied engineering examples to embed in unit learning materials.
Action Taken
Additional applied engineering examples have been embedded in unit learning materials.
Source: Student feedback from the unit evaluation.
Feedback
Strong student feedback was received on the assessment, Moodle site layout and available resources, lecturing style and examples presented, and the level of support offered by staff.
Recommendation
Continue to foster the current learning and teaching environment.
Action Taken
The teaching and learning approach has been maintained.
Source: Student feedback from the unit evaluation
Feedback
Students commented very favourably on the well structured, well resourced and streamlined delivery of the unit and recognised the expertise of the teaching staff.
Recommendation
Continue to foster the current learning and teaching environment.
Action Taken
Nil.
Source: Unit coordinator reflection
Feedback
Further highlight to students the need for a strong and consistent weekly commitment in completing the recommended course work.
Recommendation
Reinforce to students the need for maintaining a strong study commitment and adequate time allocation to their studies.
Action Taken
Nil.
Unit learning Outcomes

On successful completion of this unit, you will be able to:

  1. Interpret the derivative as a rate of change to apply the rules of differentiation in investigating rates of change of functions
  2. Construct mathematical models to investigate optimisation problems using differential calculus
  3. Carry out the process of integration as the inverse operation of differentiation
  4. Apply standard rules and techniques of integration to construct and analyse simple mathematical models involving rates of change and elementary differential equations
  5. Use the Fundamental Theorem of Calculus to illustrate the relationship between the derivative and the integral of a function and apply the theorem to problems involving definite integrals
  6. Communicate results, concepts, and ideas in context using mathematics as a language
  7. Use mathematical software to visualise, analyse, validate and solve problems.


Alignment of Assessment Tasks to Learning Outcomes
Assessment Tasks Learning Outcomes
1 2 3 4 5 6 7
1 - Written Assessment
2 - Written Assessment
3 - Take Home Exam
Alignment of Graduate Attributes to Learning Outcomes
Introductory Level
Intermediate Level
Graduate Level
Graduate Attributes Learning Outcomes
1 2 3 4 5 6 7
1 - Communication
2 - Problem Solving
3 - Critical Thinking
4 - Information Literacy
6 - Information Technology Competence
Alignment of Assessment Tasks to Graduate Attributes
Introductory Level
Intermediate Level
Graduate Level
Assessment Tasks Graduate Attributes
1 2 3 4 5 6 7 8 9
1 - Written Assessment
2 - Written Assessment
3 - Take Home Exam