Viewing Course History

The information below is relevant from 09/03/2015 to 06/03/2016
Click Here to view current information

CG21 - Bachelor of Engineering Technology

Overview

Compulsory Residential School

Some units in this course require you to attend a compulsory Residential School or Work Integrated Learning. Please see Course Features in the Getting Started tab for further information.

Course Overview

As a Bachelor of Engineering Technology student, you will develop and demonstrate technical engineering knowledge and skills in civil engineering, electrical engineering or mechanical engineering, integrating problem-solving, teamwork and communication skills. This CQUniversity engineering program incorporates Project Based Learning, providing you the opportunity to learn in context, in formal and informal learning environments such as workshops, classes and project studios. Teamwork and problem solving skills are learned alongside technical content in exciting real-world engineering contexts.

The program consists of a common first level after which students select their major in either civil engineering (structural or municipal transportation), electrical engineering (electrical control or electrical power) or mechanical engineering (design, energy or process).

This program is available in distance mode, allowing students the flexibility to study if they are in a remote location or if they are working and cannot attend face-to-face classes. Distance students will attend residential schols associated with some courses in the program in order to develop practical skills and to network with staff and students in the program. They will also interact with staff and students via online course websites.

The Bachelor of Engineering Technology may also be used as an alternative entry path into the Bachelor of Engineering (Honours). Bachelor of Engineering Technology students study many of the same courses as Bachelor of Engineering students but in a narrower discipline area.

Career Information

Bachelor of Engineering Technology graduates enjoy a wide variety of challenging career options across a range of industries and government sectors. As an Engineering Technologist you will apply your problem-solving skills and knowledge of scientific fundamentals to the design, testing, inspection, adaptation, commissioning, management or operation of on-site equipment, plant and sustainable systems.

Engineering Technologists, having specialised in one of the disciplines of civil (structural), civil (municipal/transportation), mechanical (process), mechanical (energy), mechanical (design), electrical (electrical power) or electrical (control), find employment in national and international public and private industry sectors including the energy, transportation, manufacturing, process, construction, mining and education industries.

The Bachelor of Engineering Technology course is based on the project-based learning philosophy which offers the opportunity to learn in context. This approach is designed to produce work-ready graduates with industry-relevant skills.

Course Details
Duration 3 years full-time or 6 years part-time
Credit Points that Must be Earned 144
Number of Units Required CQUniversity uses the concept of credits to express the amount of study required for a particular course and individual units. The number of units varies between courses. Units in undergraduate courses normally consist of 6 points of credit or multiples thereof (e.g. 12, 18, 24).
Expected Hours of Study One point of credit is equivalent to an expectation of approximately two hours of student work per week in a term.
Course Type Undergraduate Award
Qualification (post nominal) BEngTech
AQF Level Level 7: Bachelor Degree
Course Fees
Indicative Year - 2024
  • Commonwealth Supported Place – Indicative First Year Fee - $7,819
  • Domestic Full Fee Paying – Indicative First Year Fee - $25,269
  • International Indicative First Term Fee - $18,510
  • International Indicative First Year Fee - $37,230
Indicative Year - 2023
  • Commonwealth Supported Place – Indicative First Year Fee - $7,253
  • International Indicative First Term Fee - $18,300
  • International Indicative First Year Fee - $37,860
Indicative Year - 2022
  • Commonwealth Supported Place – Indicative First Year Fee - $7,013
  • International Indicative First Term Fee - $18,030
  • International Indicative First Year Fee - $36,120

Admission Codes

Where and when can I start?
Units offered internally at the below campuses may be delivered using a combination of face-to-face and video conferencing style teaching.
Units offered via MIX mode are delivered online and require compulsory attendance of site-specific learning activities such as on-campus residential schools, placements and/or work integrated learning. See Course Features tab for further information. Online units are delivered using online resources only.
Please Click Here for more information.
The following tables list the courses availabilities by location and term. Directing your pointer over your preferred location will provide further information if this course is not available for the full duration. Please be sure to also check individual unit availability by location and term prior to enrolling.

Domestic Availability

Term 2 - 2025

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 1 - 2025

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 2 - 2024

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 1 - 2024

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 2 - 2023

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 1 - 2023

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 2 - 2022

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 1 - 2022

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 1 - 2021

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 2 - 2020

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 1 - 2020

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 2 - 2019

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 1 - 2019

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 2 - 2018

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some units in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Bundaberg
Cairns
Distance
Gladstone
Mackay
Rockhampton

Term 1 - 2018

Bundaberg
Cairns
Distance
Gladstone
Mackay
Rockhampton

Term 2 - 2017

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some units in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Bundaberg
Cairns
Distance
Gladstone
Mackay
Rockhampton

Term 1 - 2017

Bundaberg
Cairns
Distance
Gladstone
Mackay
Rockhampton

Term 2 - 2016

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some units in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Bundaberg
Cairns
Distance
Gladstone
Mackay
Rockhampton

Term 1 - 2016

Bundaberg
Cairns
Distance
Gladstone
Mackay
Rockhampton

Term 2 - 2015

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some courses in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Bundaberg
Distance
Gladstone
Mackay
Rockhampton

Term 1 - 2015

Bundaberg
Distance
Gladstone
Mackay
Rockhampton

Term 2 - 2014

Term 2 entry is only available to students with advanced standing. Incoming students should hold a Diploma or Advanced Diploma in an engineering discipline.
Distance

Term 1 - 2014

Bundaberg
Distance
Gladstone
Mackay
Rockhampton
Show All

International Availability

Term 2 - 2025

Brisbane
Online
Rockhampton

Term 1 - 2025

Brisbane
Online
Rockhampton

Term 2 - 2024

Brisbane
Online
Rockhampton

Term 1 - 2024

Brisbane
Online
Rockhampton

Term 2 - 2023

Brisbane
Rockhampton

Term 1 - 2023

Rockhampton

Term 2 - 2022

Rockhampton

Term 1 - 2022

Rockhampton

Term 1 - 2021

Sorry, no international availabilities found.

Term 2 - 2020

Sorry, no international availabilities found.

Term 1 - 2020

Sorry, no international availabilities found.

Term 2 - 2019

Sorry, no international availabilities found.

Term 1 - 2019

Sorry, no international availabilities found.

Term 2 - 2018

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some units in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Sorry, no international availabilities found.

Term 1 - 2018

Distance

Term 2 - 2017

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some units in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Sorry, no international availabilities found.

Term 1 - 2017

Distance

Term 2 - 2016

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some units in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Sorry, no international availabilities found.

Term 1 - 2016

Distance

Term 2 - 2015

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some courses in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Sorry, no international availabilities found.

Term 1 - 2015

Distance

Term 2 - 2014

Term 2 entry is only available to students with advanced standing. Incoming students should hold a Diploma or Advanced Diploma in an engineering discipline.
Distance

Term 1 - 2014

Distance
Show All
For any problems regarding admissions availability for the selected course please contact 13 CQUni (13 27 86) or send us an email at http://contactus.cqu.edu.au/
What do I need to start?
Entry Scores
Rank Threshold SR 66.00 | ATAR 66.00
Entry Requirements

Domestic students - Prerequisites - English (4, SA), Maths B (4, SA);

International students - refer to the international student section.

Security Requirements
No information available at this time
Health Requirements
No information available at this time
Assumed Knowledge

Domestic Students - Recommended study - Physics, Mathematics C, Graphics

Course Features

Awards and Accreditation

Interim Awards Not applicable
Exit Awards Not applicable
Accreditation
  • Professional Practice: Mechanical Major
    Engineers Australia

    The CG21 Bachelor of Engineering Technology course is fully accredited by Engineers Australia

    Graduates are recognised as engineering technologists and eligible for Graduate membership with EA.

  • Professional Practice: Electrical Major
    Engineers Australia

    The CG21 Bachelor of Engineering Technology course is fully accredited by Engineers Australia

    Graduates are recognised as engineering technologists and eligible for Graduate membership with EA.

  • Professional Practice: Civil Major
    Engineers Australia

    The CG21 Bachelor of Engineering Technology course is fully accredited by Engineers Australia

    Graduates are recognised as engineering technologists and eligible for Graduate membership with EA.

Residential School Requirements

Compulsory Residential School Students studying via distance education will be required to attend compulsory residential schools for some courses. On average 1 residential school per part-time year of study.
Click here to view all Residential Schools

Practicum/Work Placement

- Students are required to complete a total of 6 weeks industry practice. Refer to More Details for further information.

Previous and Current Enrolments

Year Number of Students
2024 16
2023 32
2022 36
2021 36
2020 29
Inherent Requirements
There are Inherent Requirements (IRs) that you need to be aware of, and fulfil, to achieve the core learning outcomes of the units and course. IRs are the essential capabilities, knowledge, behaviours and skills that are needed to complete a unit or course.

Please note that in some instances there may be similarities between course, entry and inherent requirements.

If you experience difficulties meeting these requirements, reasonable adjustments may be made upon contacting accessibility@cqu.edu.au. Adjustment must not compromise the academic integrity of the degree or course chosen at CQUniversity or the legal requirements of field education.

Ethical Behaviour

Examples are:

  • Complying with academic and non-academic misconduct policies and procedures such as CQUniversity’s Student Charter, Student Misconduct Policy and Student Behavioural Misconduct Procedures and Assessment Policy and Procedure (Higher Education Coursework).
  • Using your knowledge and skills for the benefit of the community to create engineering solutions for a sustainable future, in accordance with the Engineers Australia Code of Ethics. In doing so, you will strive to serve the community ahead of other personal or sectarian interests.
  • Demonstrating integrity, scientific and technical competence, exude leadership qualities and promote sustainability, in the course of your engineering practice.
Behavioural Stability

Examples are:

  • Being reflective with personal behaviours in relation to professional performance and being positive and receptive to processing constructive supervisor/lecturer feedback or criticism.
  • Interacting with people from a wide range of backgrounds and cultures in a calm and composed manner in difficult to deal with situations.
  • Approaching difficult situations with diplomacy and refraining from using inappropriate words/actions either verbally or in written communication.
  • Accepting that engineering practice is a human-centric activity and that you must therefore, develop your ability to work well with others.
  • Having the desire to solve problems in order to improve the standard of living of the people in the community.
Legal Compliance

Examples are:

  • Understanding and complying with all relevant policies and procedures applicable in engineering practice.
  • Complying with rules and regulations that apply in your practice location.
  • Recognising and positively responding to any legal compliance issues that arise and bringing them to the attention of the appropriate stakeholders.
Communication Skills (Verbal, Non-verbal, Written and Technology)

Examples are:

  • Verbally communicating in the English language with accuracy, appropriateness and effectiveness.
  • Listening to other's point of view and actively participating in discussion activities related to the course.
  • Using language that is appropriate to the context of the individual, group or workplace.
  • Presenting in front of a range of audiences including academics, students and industry personnel.
  • Establishing rapport with clients from differing socio-cultural environments in the delivery of engineering projects and responding appropriately to clients, supervisors and other professionals.
  • Using appropriate facial expressions: eye contact, being mindful of space, time boundaries, a range of body movements and gestures.
  • Recognising and interpreting non-verbal cues of others and responding appropriately during activities related to the course, as well as in the engineering practice environment.
  • Competently and appropriately constructing written assessment work in a logical, coherent manner, and with correct grammar and punctuation to the required academic standards.
  • Expressing complex and detailed information and knowledge into a logical and legible report, in a timely manner that meets professional standards and clearly communicates the intended message.
  • Accurately conveying and documenting information in a written form that meets legal and engineering requirements.
  • Accessing a computer for your studies, and possessing basic computer knowledge and skills to engage in the on-line learning environment that may include completing relevant on-line assessments and participating in on-line forums or responding to emails.
  • Regularly accessing the Internet for research, and email for communication with peers and lecturers.
  • Being adept and proficient in the use of discipline specific computer systems and be able to analyse, manipulate and display scientific information.
Cognitive Abilities (Knowledge and Cognitive Skills, Literacy and Numeracy)

Examples are:

  • Conceptualising and using appropriate knowledge in response to academic assessment items.
  • Applying theoretical knowledge, research evidence, policies and procedures in engineering practice.
  • Discerning the wide variety of socio-economic environments that engineering practice takes place in, and provide effective professional solutions to stakeholders.
  • Competently reading, writing and accurately interpreting information to convey language effectively in engineering projects and services.
  • Producing accurate, concise and clear engineering documentation which meets legal requirements.
  • Retrieving correct information from appropriates sources, processing it and converting it into simpler terms if required.
  • Demonstrating competency in applying appropriate mathematical knowledge and skills to make calculations that represent an engineering system.
  • Demonstrating effective use of numeracy skills to make accurate interpretations of engineering system response data.
  • Applying numeracy skills to interpret and solve problems in a range of engineering projects and services.
Sensory Abilities (Visual, Auditory, Tactile)

Examples are:

  • Accurately using instruments for measurements.
  • Observing and detecting subtle changes in responses to engineering systems using instrumentation.
  • Having sufficient auditory ability to be capable of hearing warnings when on site.
  • Interacting effectively with stakeholders including clients, members of the community, tradespeople and other members of the engineering team.
  • Climbing a ladder or steep stairs, walking along scaffolding and traversing a construction site.
Relational Skills

Examples are:

  • Patience - is valuable when it comes to dealing with picky or difficult clients, complex long-term projects or colleagues who are slow and hard to keep on task.
  • Trustworthiness - an invaluable asset to employers, who not only feel comfortable with the individual’s honesty and ethical values, but believe they will do what they say when they say they will do it.
  • Reliability - is an important relational skill in every profession, whether it relates to showing up for work on time, performing duties as assigned, or meeting crucial deadlines.
  • Empathy - being able to consistently look at and understand the perspective of others is a relational skill that’s highly valued in the customer service arena.
  • Influence - Having the ability to effectively persuade and influence others is a valuable relational workplace skill. An influential employee is typically intuitive and able to read people, which is an asset in many professional venues.
Reflective Skills

Examples are:

  • Read - around the topics you are learning about or want to learn about and develop
  • Ask - others about the way they do things and why
  • Watch - what is going on around you
  • Feel - pay attention to your emotions, what prompts them, and how you deal with negative ones
  • Talk - share your views and experiences with others
  • Think - learn to value time spent thinking about your work
Sustainable Performance

Examples are:

  • Actively participating in activities related to the course and professional experience.
  • Performing with the required physical and mental energy and endurance in performing engineering skills and services during set time frames.
  • Showing persistence when learning a new concept - seeing it as a challenge to be solved rather than an insurmountable obstacle.
Strength and Mobility (Gross Motor Skills and Fine Motor Skills)

Examples are:

  • Conducting repairs to engineering systems.
  • Transporting field equipment during the data collection phase of engineering projects.
  • Traversing uneven ground on construction sites.
  • Manipulating instruments in tests and measurements.
  • Using knobs and dials in equipment used for field data collection.
Interpersonal Engagement

Examples are:

  • Communicating respectfully with a multitude of community, government and industry stakeholders.
  • Creating and sustaining professional relationships.
  • Considering the views of different stakeholders in decision making.
Information and Communication Technology (ICT) Abilities
Examples are:
  • Competently using a desktop operating system such as Microsoft Windows or Mac OS X.
  • Competently using productivity software such as Microsoft Office.
  • Competently using the internet for a range of study and work integrated learning activities.
  • Using associated electronic devices such as (but not limited to) digital scanners, copiers, cameras and video cameras, a tablet computer or a mobile phone for study activities.
  • Completely using video communication software such as Zoom and Skype.
Core Learning Outcomes
Please refer to the Core Structure Learning Outcomes
Civil Engineering (Municipal transportation stream) Learning Outcomes
  • 1. Apply a systematic, theory-based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the technology domain.
  • 2. Fluently apply a conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences which underpin the technology domain.
  • 3. Proficiently apply in depth understanding of specialist bodies of knowledge within the technology domain.
  • 4. Identify and critically appraise knowledge development within the technology domain.
  • 5. Identify contextual factors impacting the technology domain.
  • 6. Explain the scope, principles, norms, accountabilities and bounds of contemporary engineering practice in the technology domain.
  • 7. Apply established engineering methods to broadly defined problem solving within the technology domain.
  • 8. Apply engineering techniques, tools and resources within the technology domain.
  • 9. Proficiently apply systematic synthesis and design processes within the technology domain.
  • 10. Apply systematic approaches to the conduct and management of projects within the technology domain.
  • 11. Demonstrate ethical conduct and professional accountability.
  • 12. Communicate effectively in oral and written formats in professional and lay domains.
  • 13. Demonstrate creative, innovative and pro-active demeanour.
  • 14. Manage and use information in a professional manner.
  • 15. Exhibit orderly management of self and professional conduct.
  • 16. Demonstrate effective team membership and team leadership.
  Course Learning Outcomes
Australian Qualifications Framework Descriptors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1. KNOWLEDGE Have a broad and coherent body of knowledge, with depth in the underlying principles and concepts in one or more disciplines as a basis for independent lifelong learning
2. SKILLS Have cognitive skills to review critically, analyse, consolidate and synthesise knowledge
3. SKILLS Have cognitive and technical skills to demonstrate a broad understanding of knowledge with depth in some areas
4. SKILLS Have cognitive and creative skills to exercise critical thinking and judgement in identifying and solving problems with intellectual independence
5. SKILLS Have communication skills to present a clear, coherent and independent exposition of knowledge and ideas
6. APPLICATION OF KNOWLEDGE & SKILLS Demonstrate initiative and judgement in planning, problem solving and decision making in professional practice and/or scholarship
7. APPLICATION OF KNOWLEDGE & SKILLS Adapt knowledge and skills in diverse contexts
8. APPLICATION OF KNOWLEDGE & SKILL Be responsible and accountable for own learning and professional practice and in collaboration with others within broad parameters
KNOWLEDGE Develop an understanding and appreciation of Aboriginal and Torres Strait Islander peoples and culture in contemporary and historical context using the respectful and appropriate protocols and terminology
APPLICATION OF KNOWLEDGE & SKILLS Engage in reflective self-evaluation of own cultural values and perspectives to proactively create an inclusive workplace that affirms and celebrates cultural diversity
APPLICATION OF KNOWLEDGE & SKILLS Display leadership by creating inclusive work environments and work with Aboriginal and Torres Strait Islander people in a culturally respectful manner
Civil Engineering (Structural Stream) Learning Outcomes
  • 1. Apply a systematic, theory-based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the technology domain.
  • 2. Fluently apply a conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences which underpin the technology domain.
  • 3. Proficiently apply in depth understanding of specialist bodies of knowledge within the technology domain.
  • 4. Identify and critically appraise knowledge development within the technology domain.
  • 5. Identify contextual factors impacting the technology domain.
  • 6. Explain the scope, principles, norms, accountabilities and bounds of contemporary engineering practice in the technology domain.
  • 7. Apply established engineering methods to broadly defined problem solving within the technology domain.
  • 8. Apply engineering techniques, tools and resources within the technology domain.
  • 9. Proficiently apply systematic synthesis and design processes within the technology domain.
  • 10. Apply systematic approaches to the conduct and management of projects within the technology domain.
  • 11. Demonstrate ethical conduct and professional accountability.
  • 12. Communicate effectively in oral and written formats in professional and lay domains.
  • 13. Demonstrate creative, innovative and pro-active demeanour.
  • 14. Manage and use information in a professional manner.
  • 15. Exhibit orderly management of self and professional conduct.
  • 16. Demonstrate effective team membership and team leadership.
  Course Learning Outcomes
Australian Qualifications Framework Descriptors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1. KNOWLEDGE Have a broad and coherent body of knowledge, with depth in the underlying principles and concepts in one or more disciplines as a basis for independent lifelong learning
2. SKILLS Have cognitive skills to review critically, analyse, consolidate and synthesise knowledge
3. SKILLS Have cognitive and technical skills to demonstrate a broad understanding of knowledge with depth in some areas
4. SKILLS Have cognitive and creative skills to exercise critical thinking and judgement in identifying and solving problems with intellectual independence
5. SKILLS Have communication skills to present a clear, coherent and independent exposition of knowledge and ideas
6. APPLICATION OF KNOWLEDGE & SKILLS Demonstrate initiative and judgement in planning, problem solving and decision making in professional practice and/or scholarship
7. APPLICATION OF KNOWLEDGE & SKILLS Adapt knowledge and skills in diverse contexts
8. APPLICATION OF KNOWLEDGE & SKILL Be responsible and accountable for own learning and professional practice and in collaboration with others within broad parameters
KNOWLEDGE Develop an understanding and appreciation of Aboriginal and Torres Strait Islander peoples and culture in contemporary and historical context using the respectful and appropriate protocols and terminology
APPLICATION OF KNOWLEDGE & SKILLS Engage in reflective self-evaluation of own cultural values and perspectives to proactively create an inclusive workplace that affirms and celebrates cultural diversity
APPLICATION OF KNOWLEDGE & SKILLS Display leadership by creating inclusive work environments and work with Aboriginal and Torres Strait Islander people in a culturally respectful manner
Electrical Engineering (Electrical Control Stream) Learning Outcomes
  • 1. Apply a systematic, theory-based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the technology domain.
  • 2. Fluently apply a conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences which underpin the technology domain.
  • 3. Proficiently apply in depth understanding of specialist bodies of knowledge within the technology domain.
  • 4. Identify and critically appraise knowledge development within the technology domain.
  • 5. Identify contextual factors impacting the technology domain.
  • 6. Explain the scope, principles, norms, accountabilities and bounds of contemporary engineering practice in the technology domain.
  • 7. Apply established engineering methods to broadly defined problem solving within the technology domain.
  • 8. Apply engineering techniques, tools and resources within the technology domain.
  • 9. Proficiently apply systematic synthesis and design processes within the technology domain.
  • 10. Apply systematic approaches to the conduct and management of projects within the technology domain.
  • 11. Demonstrate ethical conduct and professional accountability.
  • 12. Communicate effectively in oral and written formats in professional and lay domains.
  • 13. Demonstrate creative, innovative and pro-active demeanour.
  • 14. Manage and use information in a professional manner.
  • 15. Exhibit orderly management of self and professional conduct.
  • 16. Demonstrate effective team membership and team leadership.
  Course Learning Outcomes
Australian Qualifications Framework Descriptors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1. KNOWLEDGE Have a broad and coherent body of knowledge, with depth in the underlying principles and concepts in one or more disciplines as a basis for independent lifelong learning
2. SKILLS Have cognitive skills to review critically, analyse, consolidate and synthesise knowledge
3. SKILLS Have cognitive and technical skills to demonstrate a broad understanding of knowledge with depth in some areas
4. SKILLS Have cognitive and creative skills to exercise critical thinking and judgement in identifying and solving problems with intellectual independence
5. SKILLS Have communication skills to present a clear, coherent and independent exposition of knowledge and ideas
6. APPLICATION OF KNOWLEDGE & SKILLS Demonstrate initiative and judgement in planning, problem solving and decision making in professional practice and/or scholarship
7. APPLICATION OF KNOWLEDGE & SKILLS Adapt knowledge and skills in diverse contexts
8. APPLICATION OF KNOWLEDGE & SKILL Be responsible and accountable for own learning and professional practice and in collaboration with others within broad parameters
KNOWLEDGE Develop an understanding and appreciation of Aboriginal and Torres Strait Islander peoples and culture in contemporary and historical context using the respectful and appropriate protocols and terminology
APPLICATION OF KNOWLEDGE & SKILLS Engage in reflective self-evaluation of own cultural values and perspectives to proactively create an inclusive workplace that affirms and celebrates cultural diversity
APPLICATION OF KNOWLEDGE & SKILLS Display leadership by creating inclusive work environments and work with Aboriginal and Torres Strait Islander people in a culturally respectful manner
Electrical Engineering (Electrical Power Stream) Learning Outcomes
  • 1. Apply a systematic, theory-based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the technology domain.
  • 2. Fluently apply a conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences which underpin the technology domain.
  • 3. Proficiently apply in depth understanding of specialist bodies of knowledge within the technology domain.
  • 4. Identify and critically appraise knowledge development within the technology domain.
  • 5. Identify contextual factors impacting the technology domain.
  • 6. Explain the scope, principles, norms, accountabilities and bounds of contemporary engineering practice in the technology domain.
  • 7. Apply established engineering methods to broadly defined problem solving within the technology domain.
  • 8. Apply engineering techniques, tools and resources within the technology domain.
  • 9. Proficiently apply systematic synthesis and design processes within the technology domain.
  • 10. Apply systematic approaches to the conduct and management of projects within the technology domain.
  • 11. Demonstrate ethical conduct and professional accountability.
  • 12. Communicate effectively in oral and written formats in professional and lay domains.
  • 13. Demonstrate creative, innovative and pro-active demeanour.
  • 14. Manage and use information in a professional manner.
  • 15. Exhibit orderly management of self and professional conduct.
  • 16. Demonstrate effective team membership and team leadership.
  Course Learning Outcomes
Australian Qualifications Framework Descriptors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1. KNOWLEDGE Have a broad and coherent body of knowledge, with depth in the underlying principles and concepts in one or more disciplines as a basis for independent lifelong learning
2. SKILLS Have cognitive skills to review critically, analyse, consolidate and synthesise knowledge
3. SKILLS Have cognitive and technical skills to demonstrate a broad understanding of knowledge with depth in some areas
4. SKILLS Have cognitive and creative skills to exercise critical thinking and judgement in identifying and solving problems with intellectual independence
5. SKILLS Have communication skills to present a clear, coherent and independent exposition of knowledge and ideas
6. APPLICATION OF KNOWLEDGE & SKILLS Demonstrate initiative and judgement in planning, problem solving and decision making in professional practice and/or scholarship
7. APPLICATION OF KNOWLEDGE & SKILLS Adapt knowledge and skills in diverse contexts
8. APPLICATION OF KNOWLEDGE & SKILL Be responsible and accountable for own learning and professional practice and in collaboration with others within broad parameters
KNOWLEDGE Develop an understanding and appreciation of Aboriginal and Torres Strait Islander peoples and culture in contemporary and historical context using the respectful and appropriate protocols and terminology
APPLICATION OF KNOWLEDGE & SKILLS Engage in reflective self-evaluation of own cultural values and perspectives to proactively create an inclusive workplace that affirms and celebrates cultural diversity
APPLICATION OF KNOWLEDGE & SKILLS Display leadership by creating inclusive work environments and work with Aboriginal and Torres Strait Islander people in a culturally respectful manner
Mechanical Engineering (Design Stream) Learning Outcomes
  • 1. Apply a systematic, theory-based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the technology domain.
  • 2. Fluently apply a conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences which underpin the technology domain.
  • 3. Proficiently apply in depth understanding of specialist bodies of knowledge within the technology domain.
  • 4. Identify and critically appraise knowledge development within the technology domain.
  • 5. Identify contextual factors impacting the technology domain.
  • 6. Explain the scope, principles, norms, accountabilities and bounds of contemporary engineering practice in the technology domain.
  • 7. Apply established engineering methods to broadly defined problem solving within the technology domain.
  • 8. Apply engineering techniques, tools and resources within the technology domain.
  • 9. Proficiently apply systematic synthesis and design processes within the technology domain.
  • 10. Apply systematic approaches to the conduct and management of projects within the technology domain.
  • 11. Demonstrate ethical conduct and professional accountability.
  • 12. Communicate effectively in oral and written formats in professional and lay domains.
  • 13. Demonstrate creative, innovative and pro-active demeanour.
  • 14. Manage and use information in a professional manner.
  • 15. Exhibit orderly management of self and professional conduct.
  • 16. Demonstrate effective team membership and team leadership.
  Course Learning Outcomes
Australian Qualifications Framework Descriptors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1. KNOWLEDGE Have a broad and coherent body of knowledge, with depth in the underlying principles and concepts in one or more disciplines as a basis for independent lifelong learning
2. SKILLS Have cognitive skills to review critically, analyse, consolidate and synthesise knowledge
3. SKILLS Have cognitive and technical skills to demonstrate a broad understanding of knowledge with depth in some areas
4. SKILLS Have cognitive and creative skills to exercise critical thinking and judgement in identifying and solving problems with intellectual independence
5. SKILLS Have communication skills to present a clear, coherent and independent exposition of knowledge and ideas
6. APPLICATION OF KNOWLEDGE & SKILLS Demonstrate initiative and judgement in planning, problem solving and decision making in professional practice and/or scholarship
7. APPLICATION OF KNOWLEDGE & SKILLS Adapt knowledge and skills in diverse contexts
8. APPLICATION OF KNOWLEDGE & SKILL Be responsible and accountable for own learning and professional practice and in collaboration with others within broad parameters
KNOWLEDGE Develop an understanding and appreciation of Aboriginal and Torres Strait Islander peoples and culture in contemporary and historical context using the respectful and appropriate protocols and terminology
APPLICATION OF KNOWLEDGE & SKILLS Engage in reflective self-evaluation of own cultural values and perspectives to proactively create an inclusive workplace that affirms and celebrates cultural diversity
APPLICATION OF KNOWLEDGE & SKILLS Display leadership by creating inclusive work environments and work with Aboriginal and Torres Strait Islander people in a culturally respectful manner
Mechanical Engineering (Energy Stream) Learning Outcomes
  • 1. Apply a systematic, theory-based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the technology domain.
  • 2. Fluently apply a conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences which underpin the technology domain.
  • 3. Proficiently apply in depth understanding of specialist bodies of knowledge within the technology domain.
  • 4. Identify and critically appraise knowledge development within the technology domain.
  • 5. Identify contextual factors impacting the technology domain.
  • 6. Explain the scope, principles, norms, accountabilities and bounds of contemporary engineering practice in the technology domain.
  • 7. Apply established engineering methods to broadly defined problem solving within the technology domain.
  • 8. Apply engineering techniques, tools and resources within the technology domain.
  • 9. Proficiently apply systematic synthesis and design processes within the technology domain.
  • 10. Apply systematic approaches to the conduct and management of projects within the technology domain.
  • 11. Demonstrate ethical conduct and professional accountability.
  • 12. Communicate effectively in oral and written formats in professional and lay domains.
  • 13. Demonstrate creative, innovative and pro-active demeanour.
  • 14. Manage and use information in a professional manner.
  • 15. Exhibit orderly management of self and professional conduct.
  • 16. Demonstrate effective team membership and team leadership.
  Course Learning Outcomes
Australian Qualifications Framework Descriptors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1. KNOWLEDGE Have a broad and coherent body of knowledge, with depth in the underlying principles and concepts in one or more disciplines as a basis for independent lifelong learning
2. SKILLS Have cognitive skills to review critically, analyse, consolidate and synthesise knowledge
3. SKILLS Have cognitive and technical skills to demonstrate a broad understanding of knowledge with depth in some areas
4. SKILLS Have cognitive and creative skills to exercise critical thinking and judgement in identifying and solving problems with intellectual independence
5. SKILLS Have communication skills to present a clear, coherent and independent exposition of knowledge and ideas
6. APPLICATION OF KNOWLEDGE & SKILLS Demonstrate initiative and judgement in planning, problem solving and decision making in professional practice and/or scholarship
7. APPLICATION OF KNOWLEDGE & SKILLS Adapt knowledge and skills in diverse contexts
8. APPLICATION OF KNOWLEDGE & SKILL Be responsible and accountable for own learning and professional practice and in collaboration with others within broad parameters
KNOWLEDGE Develop an understanding and appreciation of Aboriginal and Torres Strait Islander peoples and culture in contemporary and historical context using the respectful and appropriate protocols and terminology
APPLICATION OF KNOWLEDGE & SKILLS Engage in reflective self-evaluation of own cultural values and perspectives to proactively create an inclusive workplace that affirms and celebrates cultural diversity
APPLICATION OF KNOWLEDGE & SKILLS Display leadership by creating inclusive work environments and work with Aboriginal and Torres Strait Islander people in a culturally respectful manner
Mechanical Engineering (Process Stream) Learning Outcomes
  • 1. Apply a systematic, theory-based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the technology domain.
  • 2. Fluently apply a conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences which underpin the technology domain.
  • 3. Proficiently apply in depth understanding of specialist bodies of knowledge within the technology domain.
  • 4. Identify and critically appraise knowledge development within the technology domain.
  • 5. Identify contextual factors impacting the technology domain.
  • 6. Explain the scope, principles, norms, accountabilities and bounds of contemporary engineering practice in the technology domain.
  • 7. Apply established engineering methods to broadly defined problem solving within the technology domain.
  • 8. Apply engineering techniques, tools and resources within the technology domain.
  • 9. Proficiently apply systematic synthesis and design processes within the technology domain.
  • 10. Apply systematic approaches to the conduct and management of projects within the technology domain.
  • 11. Demonstrate ethical conduct and professional accountability.
  • 12. Communicate effectively in oral and written formats in professional and lay domains.
  • 13. Demonstrate creative, innovative and pro-active demeanour.
  • 14. Manage and use information in a professional manner.
  • 15. Exhibit orderly management of self and professional conduct.
  • 16. Demonstrate effective team membership and team leadership.
  Course Learning Outcomes
Australian Qualifications Framework Descriptors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1. KNOWLEDGE Have a broad and coherent body of knowledge, with depth in the underlying principles and concepts in one or more disciplines as a basis for independent lifelong learning
2. SKILLS Have cognitive skills to review critically, analyse, consolidate and synthesise knowledge
3. SKILLS Have cognitive and technical skills to demonstrate a broad understanding of knowledge with depth in some areas
4. SKILLS Have cognitive and creative skills to exercise critical thinking and judgement in identifying and solving problems with intellectual independence
5. SKILLS Have communication skills to present a clear, coherent and independent exposition of knowledge and ideas
6. APPLICATION OF KNOWLEDGE & SKILLS Demonstrate initiative and judgement in planning, problem solving and decision making in professional practice and/or scholarship
7. APPLICATION OF KNOWLEDGE & SKILLS Adapt knowledge and skills in diverse contexts
8. APPLICATION OF KNOWLEDGE & SKILL Be responsible and accountable for own learning and professional practice and in collaboration with others within broad parameters
KNOWLEDGE Develop an understanding and appreciation of Aboriginal and Torres Strait Islander peoples and culture in contemporary and historical context using the respectful and appropriate protocols and terminology
APPLICATION OF KNOWLEDGE & SKILLS Engage in reflective self-evaluation of own cultural values and perspectives to proactively create an inclusive workplace that affirms and celebrates cultural diversity
APPLICATION OF KNOWLEDGE & SKILLS Display leadership by creating inclusive work environments and work with Aboriginal and Torres Strait Islander people in a culturally respectful manner
Course Structure

In order to complete this course, you must:

  1. Complete the core structure
  2. Complete 1 major
Number of units: 6 Total credit points: 48

Common years 1 and 2

NOTE: There is a compulsory 5 day residential school for ENEG11001 Engineering Skills 1 held during Week One of Term One. Non attendance may result in forced withdrawal from the course.

 

The recommended study progressions shown below are for a part-time student i.e. 12 units of credit per term (courses may be either 6 or 12 units of credit). Year 1 and 2 courses will be available both internally and externally. Students are advised to check availability of Year 3, 4, 5 and 6 courses.

 

All students enrol in a common first two years and then select a specialist stream. In these common years students must complete the following:

Year 1 - Term 1
Students must complete the following compulsory units:
ENEG11001 Engineering Skills 1
Year 1 - Term 2
Students must complete the following compulsory units:
ENEG11002 Engineering Skills 2
Year 2 - Term 1
Students must complete the following compulsory units:
MATH11218 Applied Mathematics
PHYS11184 Engineering Physics A
Year 2 - Term 2
Students must complete the following compulsory units:
MATH11219 Applied Calculus
PHYS11185 Engineering Physics B

Upon completion of the common first and second year courses, students will then enrol in the prescribed courses for a specialist plan. Seven plans are offered:

  • Civil engineering- structural stream
  • Civil engineering - municipal and transportation stream
  • Mechanical engineering - process stream
  • Mechanical engineering - energy stream
  • Mechanical engineering - design stream
  • Electrical engineering - electrical power stream
  • Electrical engineering - electrical control stream

Course Structure

In order to complete this course, you must:

  1. Complete the core structure
  2. Complete 1 major

Civil Engineering (Municipal transportation stream) Major

Number of units: 12 Total credit points: 96

Year 3 - Term 1
Students must complete the following compulsory units:
ENEC12007 Analysis of Structures
ENEC13009 Hydraulics
Year 3 - Term 2
Students must complete the following compulsory units:
ENEG12005 Materials Science and Engineering
ENEC12008 Geotechnical Engineering
Year 4 - Term 1
Students must complete the following compulsory units:
ENEG12004 Engineering Design & Management Planning
Year 4 - Term 2
Students must complete the following compulsory units:
ENEG12006 Engineering Design & Management Implementation
Year 5 - Term 1
Students must complete the following compulsory units:
ENEC13012 Transportation Engineering Design
Year 5 - Term 2
Students must complete the following compulsory units:
ENEC13013 Water and Environmental Design
Year 6 - Term 1
Students must complete the following compulsory units:
ENTC12004 Civil Construction
ENTG13002 Engineering Technology Project Planning
Year 6 - Term 2
Students must complete the following compulsory units:
ENTG13001 Engineering Technology Project Implementation
ENAR12005 Surveying and Mapping

* See More details for information on enrolling into your Project courses ENTG13002 Technology Project Planning and ENTG13001 Technology Project Implementation.

Course Structure

In order to complete this course, you must:

  1. Complete the core structure
  2. Complete 1 major

Civil Engineering (Structural Stream) Major

Number of units: 14 Total credit points: 96

Year 3 - Term 1
Students must complete the following compulsory units:
ENEC12007 Analysis of Structures
ENTC12004 Civil Construction
Year 3 - Term 2
Students must complete the following compulsory units:
ENEG12005 Materials Science and Engineering
ENEC13010 Solid Mechanics
Year 4 - Term 1
Students must complete the following compulsory units:
ENEG12004 Engineering Design & Management Planning
Year 4 - Term 2
Students must complete the following compulsory units:
ENEG12006 Engineering Design & Management Implementation
Year 5 - Term 1
Students must complete the following compulsory units:
ENEC13011 Steel Structures
ENEC14013 Concrete Structures
Year 5 - Term 2
Students must complete the following compulsory units:
BLAR11043 Building Systems and Services 1
ENAR12005 Surveying and Mapping
Year 6 - Term 1
Students must complete the following compulsory units:
ENEC13009 Hydraulics
ENTG13002 Engineering Technology Project Planning
Year 6 - Term 2
Students must complete the following compulsory units:
ENEC12008 Geotechnical Engineering
ENTG13001 Engineering Technology Project Implementation

* See More details for information on enrolling into your Project courses ENTG13002 Technology Project Planning and ENTG13001 Technology Project Implementation.

Course Structure

In order to complete this course, you must:

  1. Complete the core structure
  2. Complete 1 major

Electrical Engineering (Electrical Control Stream) Major

Number of units: 12 Total credit points: 96

Year 3 - Term 1
Students must complete the following compulsory units:
ENEE12014 Electrical Circuit Analysis
ENEE13020 Digital Electronics
Year 3 - Term 2
Students must complete the following compulsory units:
ENEE13018 Analogue Electronics
ENEG12005 Materials Science and Engineering
Year 4 - Term 1
Students must complete the following compulsory units:
ENEG12004 Engineering Design & Management Planning
Year 4 - Term 2
Students must complete the following compulsory units:
ENEG12006 Engineering Design & Management Implementation
Year 5 - Term 1
Students must complete the following compulsory units:
ENEE13014 Machines, Drives & Control
Year 5 - Term 2
Students must complete the following compulsory units:
ENEE14006 Embedded Microcontrollers
Year 6 - Term 1
Students must complete the following compulsory units:
ENEE13019 Control Systems Analysis and Design
ENTG13002 Engineering Technology Project Planning
Year 6 - Term 2
Students must complete the following compulsory units:
ENEE14004 Electronic Communications
ENTG13001 Engineering Technology Project Implementation

* See More details for information on enrolling into your Project courses ENTG13002 Technology Project Planning and ENTG13001 Technology Project Implementation.

Course Structure

In order to complete this course, you must:

  1. Complete the core structure
  2. Complete 1 major

Electrical Engineering (Electrical Power Stream) Major

Number of units: 13 Total credit points: 96

Year 3 - Term 1
Students must complete the following compulsory units:
ENEE12014 Electrical Circuit Analysis
ENEE13020 Digital Electronics
Year 3 - Term 2
Students must complete the following compulsory units:
ENEE12015 Electrical Power Engineering
ENEG12005 Materials Science and Engineering
Year 4 - Term 1
Students must complete the following compulsory units:
ENEG12004 Engineering Design & Management Planning
Year 4 - Term 2
Students must complete the following compulsory units:
ENEG12006 Engineering Design & Management Implementation
Year 5 - Term 1
Students must complete the following compulsory units:
ENEE13014 Machines, Drives & Control
Year 5 - Term 2
Students must complete the following compulsory units:
ENEE13021 Power System Analysis and Design
ENEE13018 Analogue Electronics
Year 6 - Term 1
Students must complete the following compulsory units:
ENEE13016 Power System Protection
ENTG13002 Engineering Technology Project Planning
Year 6 - Term 2
Students must complete the following compulsory units:
ENEE14004 Electronic Communications
ENTG13001 Engineering Technology Project Implementation

* See More details for information on enrolling into your Project courses ENTG13002 Technology Project Planning and ENTG13001 Technology Project Implementation.

Course Structure

In order to complete this course, you must:

  1. Complete the core structure
  2. Complete 1 major

Mechanical Engineering (Design Stream) Major

Number of units: 13 Total credit points: 96

Year 3 - Term 1
Students must complete the following compulsory units:
ENEM12007 Statics & Dynamics
ENEM12008 Solid Materials Handling
Year 3 - Term 2
Students must complete the following compulsory units:
ENEM12006 Fluid Mechanics
ENEG12005 Materials Science and Engineering
Year 4 - Term 1
Students must complete the following compulsory units:
ENEG12004 Engineering Design & Management Planning
Year 4 - Term 2
Students must complete the following compulsory units:
ENEG12006 Engineering Design & Management Implementation
Year 5 - Term 1
Students must complete the following compulsory units:
ENEM13011 Fluid and Electrical Drive Systems
Year 5 - Term 2
Students must complete the following compulsory units:
ENEM13014 Thermodynamics
ENEM14013 Engineering Plant Design
Year 6 - Term 1
Students must complete the following compulsory units:
ENTG13002 Engineering Technology Project Planning
ENEM14011 Energy Conversion
Year 6 - Term 2
Students must complete the following compulsory units:
ENEM14012 Solid Mechanics and Computational Analysis.
ENTG13001 Engineering Technology Project Implementation

* See More details for information on enrolling into your Project courses ENTG13002 Technology Project Planning and ENTG13001 Technology Project Implementation.

Course Structure

In order to complete this course, you must:

  1. Complete the core structure
  2. Complete 1 major

Mechanical Engineering (Energy Stream) Major

Number of units: 12 Total credit points: 96

Year 3 - Term 1
Students must complete the following compulsory units:
ENEM12007 Statics & Dynamics
ENTM12006 Industrial Fluid Power
Year 3 - Term 2
Students must complete the following compulsory units:
ENEM12006 Fluid Mechanics
ENEG12005 Materials Science and Engineering
Year 4 - Term 1
Students must complete the following compulsory units:
ENEG12004 Engineering Design & Management Planning
Year 4 - Term 2
Students must complete the following compulsory units:
ENEG12006 Engineering Design & Management Implementation
Year 5 - Term 1
Students must complete the following compulsory units:
ENEM13011 Fluid and Electrical Drive Systems
Year 5 - Term 2
Students must complete the following compulsory units:
ENEM13013 Mechanical Systems
Year 6 - Term 1
Students must complete the following compulsory units:
ENEM14011 Energy Conversion
ENTG13002 Engineering Technology Project Planning
Year 6 - Term 2
Students must complete the following compulsory units:
ENTG13001 Engineering Technology Project Implementation
ENEM13014 Thermodynamics

* See More details for information on enrolling into your Project courses ENTG13002 Technology Project Planning and ENTG13001 Technology Project Implementation.

Course Structure

In order to complete this course, you must:

  1. Complete the core structure
  2. Complete 1 major

Mechanical Engineering (Process Stream) Major

Number of units: 13 Total credit points: 96

Year 3 - Term 1
Students must complete the following compulsory units:
ENEM12007 Statics & Dynamics
ENEM12008 Solid Materials Handling
Year 3 - Term 2
Students must complete the following compulsory units:
ENEM12006 Fluid Mechanics
ENEG12005 Materials Science and Engineering
Year 4 - Term 1
Students must complete the following compulsory units:
ENEG12004 Engineering Design & Management Planning
Year 4 - Term 2
Students must complete the following compulsory units:
ENEG12006 Engineering Design & Management Implementation
Year 5 - Term 1
Students must complete the following compulsory units:
ENEM13011 Fluid and Electrical Drive Systems
Year 5 - Term 2
Students must complete the following compulsory units:
ENEM13014 Thermodynamics
ENEM14012 Solid Mechanics and Computational Analysis.
Year 6 - Term 1
Students must complete the following compulsory units:
ENTM12006 Industrial Fluid Power
ENTG13002 Engineering Technology Project Planning
Year 6 - Term 2
Students must complete the following compulsory units:
ENEM14013 Engineering Plant Design
ENTG13001 Engineering Technology Project Implementation

* See More details for information on enrolling into your Project courses ENTG13002 Technology Project Planning and ENTG13001 Technology Project Implementation.

More Details

Entry requirements

Students should have mathematical knowledge equivalent to a passing grade in Mathematical Methods (Units 3 & 4, C) or equivalent.

For domestic students, if you do not meet this requirement, Intermediate Mathematics for University and Technical Mathematics for University is deemed equivalent to Mathematical Methods. You can contact the Academic Learning Centre on alc@cqu.edu.au or call 13 27 86 to discuss your previous maths history to determine if you are required to complete any of the above.

Course Planners

Click here for part-time and full-time planners.

Completing your Final Year Project

ENTG13002 Technology Project Planning

Before enrolling in this unit, you are required to:

  • Identify a suitable academic advisor
  • Discuss project idea(s) with the academic advisor
  • Determine the project title and supervision arrangements

This should be completed before the start of the term to allow you to work on your project from the first week.

Unit Availability

All units are available in Bundaberg, Gladstone, Rockhampton, Mackay, Cairns and in Online mode. Online students will be required to attend a CQUniversity campus for compulsory residential schools in some units. Students are advised to check unit details to determine whether a unit has a residential component before enrolling.

Recommended study schedule

Students may determine their own schedule based upon credit transfers and personal study requirements.

Please note: that part-time students usually enrol in 12 units of credit per term and full-time students usually enrol in 24 units of credit per term.

Engineering practice (work experience) and report

An integral part of the course, and a requirement of Engineers Australia for course accreditation, is a minimum of nine weeks of approved work experience in an engineering environment.

As proof of work experience, students will be required to submit a formal report indicating the type of work done, the degree of responsibility involved, the person(s) to whom the student was directly responsible, and the general activities of the employer. This report should be certified by the employer. Refer to ‘Engineering Practice' document located here for further information on work experience documentation required.

You should ensure that you submit your report in a timely manner prior to your expected graduation date. You will be assessed for eligibility to graduate immediately following Certification of Grades in your final Term of study. Please allow a 2 week turn-around time for assessment of your report. Failure to meet this deadline may result in a delay to your graduation date.

Please note: That even if you are working full-time in industry whilst studying, you must still submit a report. However, if you are carrying out appropriate engineering work, you can use your normal employment as the basis of your report.

Degree with distinction

To be eligible for the award of a Distinction in the Bachelor of Engineering Technology, a student must study a minimum of 72 units of credit of CQU units within the course and have achieved a minimum 'Weighted Grade Point Average' (WGPA) of 5.00 over their entire CQUniversity study course.

A degree with distinction will be awarded to eligible students who have achieved a WGPA of 6.00 or more for the highest graded results in 72 units of credit of units in Level 2 and 3 of the course, which must include Technology Project Preparation and Technology Project Implementation.

Articulation and credit transfer

The course allows the recognition of students' appropriate previous study and experience gained from working in industry, through 'Recognition of Prior Learning' (RPL) and 'Recognition of Current Competencies' (RCC). Students will be assessed for credit transfer on a case-by-case basis and will be required to nominate units they wish to be considered for exemption from. Grounds for that exemption, through students' demonstration of prior achievement of the CQUniversity units' learning outcomes, must be documented and assessed as satisfactory by the Course Committee

Students may only gain credit transfer for up to 67% of the overall course, on a units of credit basis, with a majority of Advanced Level units studied.

We are unable to assess credit transfer until potential students accept an offer to study with the University, however you are welcome to do a self assessment by using our Credit Transfer Kit.

Please note that study undertaken more than10 years ago is not normally considered unless the applicant can supply certified documents showing that they have been continually using the required skills in the work force. Generally only TAFE diploma level or above is recognised for credit at tertiary level.

Refer to the Credit Transfer website at http://www.cqu.edu.au/credittransfer for further details on the guidelines and application process.

Transfer into the Bachelor of Engineering courses

All CQUniversity BEngTech course plans have a defined articulation path into the Bachelor of Engineering (BE) course. Students considering articulation into the BE course should contact their Student Advisor (Courses and Careers).

Rules for progression in the BET course

The BET course is criterion-referenced. As such, progress is conditional upon students having acquired specified skills and knowledge in previous units of study. Students failing a unit twice will be required to demonstrate to their Student Advisor (Courses and Careers) why their third attempt is likely to be successfully before they enrol again.


Computing requirements

It is a requirement of enrolment in this course that students have access to the CQUniversity website. Students may be required to undertake various components of study in the course using email and the Internet.

It is strongly recommended that students have access to a broadband connection or higher to access online student resources that would include but not limited to, email, internet, video streaming, electronic assessment submission.