CG21 - Bachelor of Engineering Technology

Overview

Compulsory Residential School

Some units in this course require you to attend a compulsory Residential School or Work Integrated Learning. Please see Course Features in the Getting Started tab for further information.

Course Overview

As a Bachelor of Engineering Technology student, you will integrate skills in problem-solving, sustainable development, teamwork and communications to develop and demonstrate technical capabilities in your chosen field of Civil, Electrical, Mechanical or Aircraft Maintenance Engineering. This CQUniversity Engineering course incorporates Project-Based Learning, providing you with the opportunity to learn in context, in formal and informal learning environments such as workshops, classes and project studios. Teamwork and problem-solving skills are learned alongside technical content in exciting real-world engineering contexts.

The course consists of a common first-year unit after which you will select your Major in either Civil Engineering (Structural or Municipal Transportation), Electrical Engineering (Electrical Control or Electrical Power), Mechanical Engineering (Design or Energy), or Aircraft Maintenance Engineering (Avionics or Mechanical).

Civil, Electrical and Mechanical Majors of this course are available in online mode, allowing you the flexibility to study if you are in a remote location or if you are working and cannot attend face-to-face classes. If you are studying online, you will attend residential schools associated with some units in the course in order to develop practical skills and to network with staff and students in the course. You will also interact with staff and students via online unit websites.

The first 1.5 years of the Aircraft Maintenance Engineering (Avionics or Mechanical) Major must be studied on campus at Aviation Australia Brisbane campus. The final 1.5 years of Aircraft Maintenance (Avionics or Mechanical) Major is available in both on-campus and online modes. If you successfully complete the first 1.5 years of Aircraft Maintenance Engineering (Aviation or Mechanical) Major you will be eligible to receive the European Union Aviation Safety Agency (EASA) approved Aviation Australia Diploma of Aircraft Maintenance Engineering (Avionics or Mechanical).

The Bachelor of Engineering Technology may also be used as an alternative entry pathway into the CC31 Bachelor of Engineering (Honours). As a Bachelor of Engineering Technology student, in the Civil, Electrical or Mechanical Majors, you will study many of the same units as CC31 Bachelor of Engineering students but in a narrower discipline area.

Career Information

Bachelor of Engineering Technology graduates enjoy a wide variety of challenging career options across a range of industries and government sectors. As an Engineering Technologist you will apply your problem-solving skills and knowledge of scientific fundamentals to the design, testing, inspection, adaptation, commissioning, management or operation of on-site equipment, plant and sustainable systems.

Engineering Technologists, having specialised in one of the disciplines of civil (structural), civil (municipal/transportation), mechanical (process), mechanical (energy), mechanical (design), electrical (electrical power) or electrical (control), find employment in national and international public and private industry sectors including the energy, transportation, manufacturing, process, construction, mining and education industries.

The Bachelor of Engineering Technology course is based on the project-based learning philosophy which offers the opportunity to learn in context. This approach is designed to produce work-ready graduates with industry-relevant skills.

Course Details
Duration 3 years full-time or 6 years part-time
Credit Points that Must be Earned 144
Number of Units Required CQUniversity uses the concept of credits to express the amount of study required for a particular course and individual units. The number of units varies between courses. Units in undergraduate courses normally consist of 6 points of credit or multiples thereof (e.g. 12, 18, 24).
Expected Hours of Study One point of credit is equivalent to an expectation of approximately two hours of student work per week in a term.
Course Type Undergraduate Award
Qualification (post nominal) BEngTech
AQF Level Level 7: Bachelor Degree
Course Fees
Indicative Year - 2025
  • Commonwealth Supported Place – Indicative First Year Fee - $8,140
  • Domestic Full Fee Paying – Indicative First Year Fee - $26,307
  • International Indicative First Term Fee - $20,160
  • International Indicative First Year Fee - $40,290
Indicative Year - 2024
  • Commonwealth Supported Place – Indicative First Year Fee - $7,819
  • Domestic Full Fee Paying – Indicative First Year Fee - $25,269
  • International Indicative First Term Fee - $18,510
  • International Indicative First Year Fee - $37,230
Indicative Year - 2023
  • Commonwealth Supported Place – Indicative First Year Fee - $7,253
  • International Indicative First Term Fee - $18,300
  • International Indicative First Year Fee - $37,860
Indicative Year - 2022
  • Commonwealth Supported Place – Indicative First Year Fee - $7,013
  • International Indicative First Term Fee - $18,030
  • International Indicative First Year Fee - $36,120

Admission Codes

Where and when can I start?
Units offered internally at the below campuses may be delivered using a combination of face-to-face and video conferencing style teaching.
Units offered via MIX mode are delivered online and require compulsory attendance of site-specific learning activities such as on-campus residential schools, placements and/or work integrated learning. See Course Features tab for further information. Online units are delivered using online resources only.
Please Click Here for more information.
The following tables list the courses availabilities by location and term. Directing your pointer over your preferred location will provide further information if this course is not available for the full duration. Please be sure to also check individual unit availability by location and term prior to enrolling.

Domestic Availability

Term 2 - 2026

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 1 - 2026

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 2 - 2025

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 1 - 2025

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 2 - 2024

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 1 - 2024

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 2 - 2023

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 1 - 2023

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 2 - 2022

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 1 - 2022

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 1 - 2021

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 2 - 2020

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 1 - 2020

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 2 - 2019

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 1 - 2019

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 2 - 2018

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some units in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Bundaberg
Cairns
Distance
Gladstone
Mackay
Rockhampton

Term 1 - 2018

Bundaberg
Cairns
Distance
Gladstone
Mackay
Rockhampton

Term 2 - 2017

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some units in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Bundaberg
Cairns
Distance
Gladstone
Mackay
Rockhampton

Term 1 - 2017

Bundaberg
Cairns
Distance
Gladstone
Mackay
Rockhampton

Term 2 - 2016

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some units in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Bundaberg
Cairns
Distance
Gladstone
Mackay
Rockhampton

Term 1 - 2016

Bundaberg
Cairns
Distance
Gladstone
Mackay
Rockhampton

Term 2 - 2015

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some courses in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Bundaberg
Distance
Gladstone
Mackay
Rockhampton

Term 1 - 2015

Bundaberg
Distance
Gladstone
Mackay
Rockhampton

Term 2 - 2014

Term 2 entry is only available to students with advanced standing. Incoming students should hold a Diploma or Advanced Diploma in an engineering discipline.
Distance

Term 1 - 2014

Bundaberg
Distance
Gladstone
Mackay
Rockhampton
Show All

International Availability

Term 2 - 2026

Brisbane
Online
Rockhampton

Term 1 - 2026

Brisbane
Cairns
Online
Rockhampton

Term 2 - 2025

Brisbane
Online

Term 1 - 2025

Brisbane
Cairns
Online

Term 2 - 2024

Brisbane
Online
Rockhampton

Term 1 - 2024

Brisbane
Online
Rockhampton

Term 2 - 2023

Brisbane
Rockhampton

Term 1 - 2023

Rockhampton

Term 2 - 2022

Rockhampton

Term 1 - 2022

Rockhampton

Term 1 - 2021

Sorry, no international availabilities found.

Term 2 - 2020

Sorry, no international availabilities found.

Term 1 - 2020

Sorry, no international availabilities found.

Term 2 - 2019

Sorry, no international availabilities found.

Term 1 - 2019

Sorry, no international availabilities found.

Term 2 - 2018

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some units in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Sorry, no international availabilities found.

Term 1 - 2018

Distance

Term 2 - 2017

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some units in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Sorry, no international availabilities found.

Term 1 - 2017

Distance

Term 2 - 2016

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some units in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Sorry, no international availabilities found.

Term 1 - 2016

Distance

Term 2 - 2015

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some courses in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Sorry, no international availabilities found.

Term 1 - 2015

Distance

Term 2 - 2014

Term 2 entry is only available to students with advanced standing. Incoming students should hold a Diploma or Advanced Diploma in an engineering discipline.
Distance

Term 1 - 2014

Distance
Show All
For any problems regarding admissions availability for the selected course please contact 13 CQUni (13 27 86) or send us an email at http://contactus.cqu.edu.au/
Entry Requirements - What do I need to start?
Entry Scores
Rank Threshold SR 66 | ATAR 66
Academic Requirements

Entry Requirements:

  • English (Units 3 & 4, C) or equivalent; General Mathematics (Units 3 & 4, C) or equivalent; OR
  • Diploma of Aircraft Maintenance Engineering – Avionics (10600NAT); OR
  • Diploma of Aircraft Maintenance Engineering - Mechanical (10599NAT)·

English Language Proficiency Requirements:

If you were not born in Australia, Canada, New Zealand, United Kingdom, Ireland, South Africa or the United States of America you are required to meet the English Language Proficiency requirements set by the University. Applicants are required to provide evidence of completion within the last 10 years of:

  • A secondary qualification (Year 11 and 12, or equivalent), or
  • A completed Australian Qualifications Framework (AQF) Diploma level qualification, or
  • Bachelor level qualification study for a period of at least 2 years full-time with a minimum overall GPA 4.0

completed in Australia, Canada, New Zealand, United Kingdom, Ireland, South Africa or the United States of America, which will meet the English proficiency.

If you do not satisfy any of the above, you will need to undertake an English language proficiency test and achieve the following scores:

  • An International English Language Testing System (IELTS Academic) overall band score of at least 6.0, with a minimum 6.0 in each subset; or
  • An Occupational English Test with Grades A or B only in each of the four components; or
  • Pearson Test of English Academic (PTE Academic) - Requires an overall score of 54 with no sub-score less than 54; or
  • Test of English as a Foreign Language (TOEFL) – Requires an overall score of 75 or better with no score less than 21 (Internet Based).

English test results remain valid for no more than two years between final examination date and the date of commencement of study and must appear on a single result certificate.

If you are an International student please visit International students English requirements for further information.

Each student will be assessed individually.

Note:

  • Aircraft Maintenance - Avionics Major: Students must complete the Aviation Australia Diploma of Aircraft Maintenance Engineering (Avionics)
  • Aircraft Maintenance - Mechanical Major: Students must complete the Aviation Australia Diploma of Aircraft Maintenance Engineering (Mechanical)
Assumed Knowledge

Domestic Students - Recommended study - Physics, Mathematical Methods and Design.

Security Requirements

N/A

Health Requirements

N/A

Course Features

Awards and Accreditation

Interim Awards Not applicable
Exit Awards CL42 - Diploma of Engineering Studies
Accreditation
  • Professional Practice: Mechanical Major
    Engineers Australia

    The CG21 Bachelor of Engineering Technology course is fully accredited by Engineers Australia

    Graduates are recognised as engineering technologists and eligible for Graduate membership with EA.

  • Professional Practice: Electrical Major
    Engineers Australia

    The CG21 Bachelor of Engineering Technology course is fully accredited by Engineers Australia

    Graduates are recognised as engineering technologists and eligible for Graduate membership with EA.

  • Professional Practice: Civil Major
    Engineers Australia

    The CG21 Bachelor of Engineering Technology course is fully accredited by Engineers Australia

    Graduates are recognised as engineering technologists and eligible for Graduate membership with EA.

Residential School Requirements

Compulsory Residential School Online students of this course will be required to attend a CQUniversity location or other designated location for compulsory residential schools in some units. Students are advised to check unit details to determine whether a unit has a residential component prior to enrolling.
Click here to view all Residential Schools

Practicum/Work Placement

ENEP14004 - Students are required to complete 360 hours (including a minimum of 240 hours of industry experience) of Engineering Professional Practice prior to graduation. Once the students have completed the professional practice requirements, they must enrol in this unit and provide evidence of how they have attained the professional engineering practice exposure required by Engineers Australia.

Previous and Current Enrolments

Year Number of Students
2024 43
2023 32
2022 36
2021 36
2020 29
Inherent Requirements
There are Inherent Requirements (IRs) that you need to be aware of, and fulfil, to achieve the core learning outcomes of the units and course. IRs are the essential capabilities, knowledge, behaviours and skills that are needed to complete a unit or course.

Please note that in some instances there may be similarities between course, entry and inherent requirements.

If you experience difficulties meeting these requirements, reasonable adjustments may be made upon contacting accessibility@cqu.edu.au. Adjustment must not compromise the academic integrity of the degree or course chosen at CQUniversity or the legal requirements of field education.

Ethical Behaviour

Examples are:

  • Complying with academic and non-academic misconduct policies and procedures such as CQUniversity’s Student Charter, Student Misconduct Policy and Student Behavioural Misconduct Procedures and Assessment Policy and Procedure (Higher Education Coursework).
  • Using your knowledge and skills for the benefit of the community to create engineering solutions for a sustainable future, in accordance with the Engineers Australia Code of Ethics. In doing so, you will strive to serve the community ahead of other personal or sectarian interests.
  • Demonstrating integrity, scientific and technical competence, exude leadership qualities and promote sustainability, in the course of your engineering practice.
Behavioural Stability

Examples are:

  • Being reflective with personal behaviours in relation to professional performance and being positive and receptive to processing constructive supervisor/lecturer feedback or criticism.
  • Interacting with people from a wide range of backgrounds and cultures in a calm and composed manner in difficult to deal with situations.
  • Approaching difficult situations with diplomacy and refraining from using inappropriate words/actions either verbally or in written communication.
  • Accepting that engineering practice is a human-centric activity and that you must therefore, develop your ability to work well with others.
  • Having the desire to solve problems in order to improve the standard of living of the people in the community.
Legal Compliance

Examples are:

  • Understanding and complying with all relevant policies and procedures applicable in engineering practice.
  • Complying with rules and regulations that apply in your practice location.
  • Recognising and positively responding to any legal compliance issues that arise and bringing them to the attention of the appropriate stakeholders.
Communication Skills (Verbal, Non-verbal, Written and Technology)

Examples are:

  • Verbally communicating in the English language with accuracy, appropriateness and effectiveness.
  • Listening to other's point of view and actively participating in discussion activities related to the course.
  • Using language that is appropriate to the context of the individual, group or workplace.
  • Presenting in front of a range of audiences including academics, students and industry personnel.
  • Establishing rapport with clients from differing socio-cultural environments in the delivery of engineering projects and responding appropriately to clients, supervisors and other professionals.
  • Using appropriate facial expressions: eye contact, being mindful of space, time boundaries, a range of body movements and gestures.
  • Recognising and interpreting non-verbal cues of others and responding appropriately during activities related to the course, as well as in the engineering practice environment.
  • Competently and appropriately constructing written assessment work in a logical, coherent manner, and with correct grammar and punctuation to the required academic standards.
  • Expressing complex and detailed information and knowledge into a logical and legible report, in a timely manner that meets professional standards and clearly communicates the intended message.
  • Accurately conveying and documenting information in a written form that meets legal and engineering requirements.
  • Accessing a computer for your studies, and possessing basic computer knowledge and skills to engage in the on-line learning environment that may include completing relevant on-line assessments and participating in on-line forums or responding to emails.
  • Regularly accessing the Internet for research, and email for communication with peers and lecturers.
  • Being adept and proficient in the use of discipline specific computer systems and be able to analyse, manipulate and display scientific information.
Cognitive Abilities (Knowledge and Cognitive Skills, Literacy and Numeracy)

Examples are:

  • Conceptualising and using appropriate knowledge in response to academic assessment items.
  • Applying theoretical knowledge, research evidence, policies and procedures in engineering practice.
  • Discerning the wide variety of socio-economic environments that engineering practice takes place in, and provide effective professional solutions to stakeholders.
  • Competently reading, writing and accurately interpreting information to convey language effectively in engineering projects and services.
  • Producing accurate, concise and clear engineering documentation which meets legal requirements.
  • Retrieving correct information from appropriates sources, processing it and converting it into simpler terms if required.
  • Demonstrating competency in applying appropriate mathematical knowledge and skills to make calculations that represent an engineering system.
  • Demonstrating effective use of numeracy skills to make accurate interpretations of engineering system response data.
  • Applying numeracy skills to interpret and solve problems in a range of engineering projects and services.
Sensory Abilities (Visual, Auditory, Tactile)

Examples are:

  • Accurately using instruments for measurements.
  • Observing and detecting subtle changes in responses to engineering systems using instrumentation.
  • Having sufficient auditory ability to be capable of hearing warnings when on site.
  • Interacting effectively with stakeholders including clients, members of the community, tradespeople and other members of the engineering team.
  • Climbing a ladder or steep stairs, walking along scaffolding and traversing a construction site.
Relational Skills

Examples are:

  • Patience - is valuable when it comes to dealing with picky or difficult clients, complex long-term projects or colleagues who are slow and hard to keep on task.
  • Trustworthiness - an invaluable asset to employers, who not only feel comfortable with the individual’s honesty and ethical values, but believe they will do what they say when they say they will do it.
  • Reliability - is an important relational skill in every profession, whether it relates to showing up for work on time, performing duties as assigned, or meeting crucial deadlines.
  • Empathy - being able to consistently look at and understand the perspective of others is a relational skill that’s highly valued in the customer service arena.
  • Influence - Having the ability to effectively persuade and influence others is a valuable relational workplace skill. An influential employee is typically intuitive and able to read people, which is an asset in many professional venues.
Reflective Skills

Examples are:

  • Read - around the topics you are learning about or want to learn about and develop
  • Ask - others about the way they do things and why
  • Watch - what is going on around you
  • Feel - pay attention to your emotions, what prompts them, and how you deal with negative ones
  • Talk - share your views and experiences with others
  • Think - learn to value time spent thinking about your work
Sustainable Performance

Examples are:

  • Actively participating in activities related to the course and professional experience.
  • Performing with the required physical and mental energy and endurance in performing engineering skills and services during set time frames.
  • Showing persistence when learning a new concept - seeing it as a challenge to be solved rather than an insurmountable obstacle.
Strength and Mobility (Gross Motor Skills and Fine Motor Skills)

Examples are:

  • Conducting repairs to engineering systems.
  • Transporting field equipment during the data collection phase of engineering projects.
  • Traversing uneven ground on construction sites.
  • Manipulating instruments in tests and measurements.
  • Using knobs and dials in equipment used for field data collection.
Interpersonal Engagement

Examples are:

  • Communicating respectfully with a multitude of community, government and industry stakeholders.
  • Creating and sustaining professional relationships.
  • Considering the views of different stakeholders in decision making.
Information and Communication Technology (ICT) Abilities
Examples are:
  • Competently using a desktop operating system such as Microsoft Windows or Mac OS X.
  • Competently using productivity software such as Microsoft Office.
  • Competently using the internet for a range of study and work integrated learning activities.
  • Using associated electronic devices such as (but not limited to) digital scanners, copiers, cameras and video cameras, a tablet computer or a mobile phone for study activities.
  • Completely using video communication software such as Zoom and Skype.
Core Learning Outcomes
Please refer to the Core Structure Learning Outcomes
Aircraft Maintenance - Avionics Learning Outcomes
  • 1. Demonstrate initiative and judgment in planning, problem-solving and decision making in aircraft maintenance engineering professional practice
  • 2. Apply mathematical, science and engineering skills to engineering disciplines
  • 3. Competently and safely complete maintenance of various aircraft systems and subsystems including, flight control, navigation, autoflight, communication and avionic systems
  • 4. Analyse the operation of various aircraft systems and subsystems, including flight control, navigation, autoflight, communication and avionic systems
  • 5. Conduct all phases of engineering projects both autonomously and in teams
  • 6. Demonstrate the skills of risk management, ethical practice and professional communication at the level expected of an engineering technologist.
  Course Learning Outcomes
Australian Qualifications Framework Descriptors 1 2 3 4 5 6
1. KNOWLEDGE Have a broad and coherent body of knowledge, with depth in the underlying principles and concepts in one or more disciplines as a basis for independent lifelong learning
2. SKILLS Have cognitive skills to review critically, analyse, consolidate and synthesise knowledge
3. SKILLS Have cognitive and technical skills to demonstrate a broad understanding of knowledge with depth in some areas
4. SKILLS Have cognitive and creative skills to exercise critical thinking and judgement in identifying and solving problems with intellectual independence
5. SKILLS Have communication skills to present a clear, coherent and independent exposition of knowledge and ideas
6. APPLICATION OF KNOWLEDGE & SKILLS Demonstrate initiative and judgement in planning, problem solving and decision making in professional practice and/or scholarship
7. APPLICATION OF KNOWLEDGE & SKILLS Adapt knowledge and skills in diverse contexts
8. APPLICATION OF KNOWLEDGE & SKILL Be responsible and accountable for own learning and professional practice and in collaboration with others within broad parameters
KNOWLEDGE Develop an understanding and appreciation of Aboriginal and Torres Strait Islander peoples and culture in contemporary and historical context using the respectful and appropriate protocols and terminology
APPLICATION OF KNOWLEDGE & SKILLS Engage in reflective self-evaluation of own cultural values and perspectives to proactively create an inclusive workplace that affirms and celebrates cultural diversity
APPLICATION OF KNOWLEDGE & SKILLS Display leadership by creating inclusive work environments and work with Aboriginal and Torres Strait Islander people in a culturally respectful manner
Aircraft Maintenance - Mechanical Learning Outcomes
  • 1. Demonstrate initiative and judgment in planning, problem-solving and decision making in aircraft maintenance engineering professional practice
  • 2. Apply mathematical, science and engineering skills to engineering disciplines
  • 3. Competently and safely complete maintenance of various aircraft systems and subsystems including airframe, engine, structure and electrical
  • 4. Analyse the operation of various aircraft systems and subsystems including airframe, engine, structure and electrical
  • 5. Conduct all phases of engineering projects both autonomously and in teams
  • 6. Demonstrate the skills of risk management, ethical practice and professional communication at the level expected of an engineering technologist.
  Course Learning Outcomes
Australian Qualifications Framework Descriptors 1 2 3 4 5 6
1. KNOWLEDGE Have a broad and coherent body of knowledge, with depth in the underlying principles and concepts in one or more disciplines as a basis for independent lifelong learning
2. SKILLS Have cognitive skills to review critically, analyse, consolidate and synthesise knowledge
3. SKILLS Have cognitive and technical skills to demonstrate a broad understanding of knowledge with depth in some areas
4. SKILLS Have cognitive and creative skills to exercise critical thinking and judgement in identifying and solving problems with intellectual independence
5. SKILLS Have communication skills to present a clear, coherent and independent exposition of knowledge and ideas
6. APPLICATION OF KNOWLEDGE & SKILLS Demonstrate initiative and judgement in planning, problem solving and decision making in professional practice and/or scholarship
7. APPLICATION OF KNOWLEDGE & SKILLS Adapt knowledge and skills in diverse contexts
8. APPLICATION OF KNOWLEDGE & SKILL Be responsible and accountable for own learning and professional practice and in collaboration with others within broad parameters
KNOWLEDGE Develop an understanding and appreciation of Aboriginal and Torres Strait Islander peoples and culture in contemporary and historical context using the respectful and appropriate protocols and terminology
APPLICATION OF KNOWLEDGE & SKILLS Engage in reflective self-evaluation of own cultural values and perspectives to proactively create an inclusive workplace that affirms and celebrates cultural diversity
APPLICATION OF KNOWLEDGE & SKILLS Display leadership by creating inclusive work environments and work with Aboriginal and Torres Strait Islander people in a culturally respectful manner
Civil Learning Outcomes
  • 1. Demonstrate initiative and judgment in planning, problem-solving and decision making in civil engineering professional practice
  • 2. Apply mathematical, science and engineering skills to engineering disciplines
  • 3. Analyse and design geotechnical engineering elements using fundamental concepts including soil classification and properties
  • 4. Analyse and design civil infrastructure according to relevant Australian standards using industry best practices
  • 5. Conduct all phases of engineering projects both autonomously and in teams
  • 6. Demonstrate the skills of risk management, ethical practice and professional communication at the level expected of an engineering technologist
  • 7. Apply civil engineering principles to achieve outcomes aligned with the United Nations Sustainable Development Goals.
  Course Learning Outcomes
Australian Qualifications Framework Descriptors 1 2 3 4 5 6 7
1. KNOWLEDGE Have a broad and coherent body of knowledge, with depth in the underlying principles and concepts in one or more disciplines as a basis for independent lifelong learning
2. SKILLS Have cognitive skills to review critically, analyse, consolidate and synthesise knowledge
3. SKILLS Have cognitive and technical skills to demonstrate a broad understanding of knowledge with depth in some areas
4. SKILLS Have cognitive and creative skills to exercise critical thinking and judgement in identifying and solving problems with intellectual independence
5. SKILLS Have communication skills to present a clear, coherent and independent exposition of knowledge and ideas
6. APPLICATION OF KNOWLEDGE & SKILLS Demonstrate initiative and judgement in planning, problem solving and decision making in professional practice and/or scholarship
7. APPLICATION OF KNOWLEDGE & SKILLS Adapt knowledge and skills in diverse contexts
8. APPLICATION OF KNOWLEDGE & SKILL Be responsible and accountable for own learning and professional practice and in collaboration with others within broad parameters
KNOWLEDGE Develop an understanding and appreciation of Aboriginal and Torres Strait Islander peoples and culture in contemporary and historical context using the respectful and appropriate protocols and terminology
APPLICATION OF KNOWLEDGE & SKILLS Engage in reflective self-evaluation of own cultural values and perspectives to proactively create an inclusive workplace that affirms and celebrates cultural diversity
APPLICATION OF KNOWLEDGE & SKILLS Display leadership by creating inclusive work environments and work with Aboriginal and Torres Strait Islander people in a culturally respectful manner
Electrical Learning Outcomes
  • 1. Demonstrate initiative and judgment in planning, problem-solving and decision making in electrical engineering professional practice
  • 2. Apply mathematics, science and engineering skills to engineering disciplines
  • 3. Design, analyse and implement complex circuits to provide solutions to industrial applications
  • 4. Analyse, design, implement and test electrical systems using industry-standard software and hardware tools
  • 5. Conduct all phases of engineering projects both autonomously and in teams
  • 6. Demonstrate the skills of risk management, ethical practice and professional communication at the level expected of an engineering technologist
  • 7. Apply electrical engineering principles to achieve outcomes aligned with the United Nations Sustainable Development Goals.
  Course Learning Outcomes
Australian Qualifications Framework Descriptors 1 2 3 4 5 6 7
1. KNOWLEDGE Have a broad and coherent body of knowledge, with depth in the underlying principles and concepts in one or more disciplines as a basis for independent lifelong learning
2. SKILLS Have cognitive skills to review critically, analyse, consolidate and synthesise knowledge
3. SKILLS Have cognitive and technical skills to demonstrate a broad understanding of knowledge with depth in some areas
4. SKILLS Have cognitive and creative skills to exercise critical thinking and judgement in identifying and solving problems with intellectual independence
5. SKILLS Have communication skills to present a clear, coherent and independent exposition of knowledge and ideas
6. APPLICATION OF KNOWLEDGE & SKILLS Demonstrate initiative and judgement in planning, problem solving and decision making in professional practice and/or scholarship
7. APPLICATION OF KNOWLEDGE & SKILLS Adapt knowledge and skills in diverse contexts
8. APPLICATION OF KNOWLEDGE & SKILL Be responsible and accountable for own learning and professional practice and in collaboration with others within broad parameters
KNOWLEDGE Develop an understanding and appreciation of Aboriginal and Torres Strait Islander peoples and culture in contemporary and historical context using the respectful and appropriate protocols and terminology
APPLICATION OF KNOWLEDGE & SKILLS Engage in reflective self-evaluation of own cultural values and perspectives to proactively create an inclusive workplace that affirms and celebrates cultural diversity
APPLICATION OF KNOWLEDGE & SKILLS Display leadership by creating inclusive work environments and work with Aboriginal and Torres Strait Islander people in a culturally respectful manner
Mechanical Learning Outcomes
  • 1. Demonstrate initiative and judgment in planning, problem-solving and decision making in mechanical engineering professional practice
  • 2. Apply mathematics, science and engineering skills to engineering disciplines
  • 3. Design and analyse machine components and systems by applying principles of materials, statics, stress analysis and machine design using relevant design standards and codes
  • 4. Analyse, design, implement and test mechanical systems (energy/dynamic) using industry-standard software and hardware tools
  • 5. Conduct all phases of engineering projects both autonomously and in teams
  • 6. Demonstrate the skills of risk management, ethical practice and professional communication at the level expected of an engineering technologist
  • 7. Apply mechanical engineering principles to achieve outcomes aligned with the United Nations Sustainable Development Goals.
  Course Learning Outcomes
Australian Qualifications Framework Descriptors 1 2 3 4 5 6 7
1. KNOWLEDGE Have a broad and coherent body of knowledge, with depth in the underlying principles and concepts in one or more disciplines as a basis for independent lifelong learning
2. SKILLS Have cognitive skills to review critically, analyse, consolidate and synthesise knowledge
3. SKILLS Have cognitive and technical skills to demonstrate a broad understanding of knowledge with depth in some areas
4. SKILLS Have cognitive and creative skills to exercise critical thinking and judgement in identifying and solving problems with intellectual independence
5. SKILLS Have communication skills to present a clear, coherent and independent exposition of knowledge and ideas
6. APPLICATION OF KNOWLEDGE & SKILLS Demonstrate initiative and judgement in planning, problem solving and decision making in professional practice and/or scholarship
7. APPLICATION OF KNOWLEDGE & SKILLS Adapt knowledge and skills in diverse contexts
8. APPLICATION OF KNOWLEDGE & SKILL Be responsible and accountable for own learning and professional practice and in collaboration with others within broad parameters
KNOWLEDGE Develop an understanding and appreciation of Aboriginal and Torres Strait Islander peoples and culture in contemporary and historical context using the respectful and appropriate protocols and terminology
APPLICATION OF KNOWLEDGE & SKILLS Engage in reflective self-evaluation of own cultural values and perspectives to proactively create an inclusive workplace that affirms and celebrates cultural diversity
APPLICATION OF KNOWLEDGE & SKILLS Display leadership by creating inclusive work environments and work with Aboriginal and Torres Strait Islander people in a culturally respectful manner
Course Structure

In order to complete this course, you must:

  1. Complete the core structure
  2. Complete 1 major
Number of units: 3 Total credit points: 24

To complete this course, you must pass all units in the Core Structure and one Major. The More Details tab has a link to the Course Planners Site which list all units for this course. Note that full-time students generally enrol in 24cp per term and part-time students generally enrol in a half-load of 12cp per term.

 

Available units
Students must complete the following compulsory units:
ENEG11005 Introduction to Contemporary Engineering
ENEG11007 Engineering Industry Project Investigation
MATH11218 Applied Mathematics

Professional Engineering Practice

To be eligible for graduation, you must complete 360 hours of Professional Engineering Practice, including a minimum of 240 hours of industry experience. Mandatory work experience is set by the course accreditation body Engineers Australia. In one of your final terms of study, you must enrol into the following zero-credit unit, at no cost to you, and record your Professional Engineering Practice in an ePortfolio. The More Details tab contains a link to the Undergraduate Engineering Course Moodle Meta-site which contains further instructions on completing your Professional Engineering Practice.

Available units
Students must complete the following compulsory units:
ENEP14004 Engineering Practice Experience

Aircraft Maintenance - Avionics Major

Number of units: 17 Total credit points: 120

Initially, the introductory and intermediate units of this Major may not be scheduled and delivered by CQUniversity staff. It is expected that all the students (domestic and international) coming into this Major will come through the Diploma pathway and will be provided credit for relevant units. School of Engineering and Technology is currently in the process of developing a third party teaching agreement with Aviation Australia to deliver these units at the Brisbane and Cairns campuses. Once that agreement is finalised, the units can be offered at CQU and delivered by AA at their campuses.  

Introductory units

Available units
Students must complete the following compulsory units:
ENTA11011 Analytical Methods and Physics for Aircraft Maintenance
ENTA11012 Electronic Fundamentals for Aircraft Maintenance
ENTA11013 Electrical Fundamentals for Aircraft Maintenance
ENTA11014 Avionics Aircraft Maintenance Practices
ENTA11015 Human Factors and Aviation Legislation
ENTA11016 Aircraft Instrumentation Systems

Intermediate units

Available units
Students must complete the following compulsory units:
ENTA12015 Aerodynamics, Flight Control and Navigation
ENTA12016 Automatic Flight Control and Communication Systems
ENTA12017 Aircraft Systems - Avionics

Advanced units

Available units
Students must complete the following compulsory units:
ENEM13012 Maintenance Engineering
ENEX12003 Essential Mathematics for Control Systems
ENTG13003 Advanced Materials in Aviation
ENTA13021 Aircraft Communication Systems
ENTA13022 Remote Piloted Aircraft Systems
ENTA13023 Advanced Aircraft Control Systems

Undergraduate Thesis

At the end of your course, you will complete an undergraduate thesis over two terms under the supervision of an academic adviser. Your thesis confirms your ability to work as an Engineering Technologist. You should organise an Academic Adviser and a suitable project topic before commencing the thesis planning unit. It is strongly recommended to decide your topic based on your career interests.

Available units
Students must complete the following compulsory units:
ENTG13002 Engineering Technology Project Planning
ENTG13001 Engineering Technology Project Implementation

Aircraft Maintenance - Mechanical Major

Number of units: 19 Total credit points: 120

Initially, the introductory and intermediate units of this Major may not be scheduled and delivered by CQUniversity staff. It is expected that all the students (domestic and international) coming into this Major will come through the Diploma pathway and will be provided credit for relevant units. School of Engineering and Technology is currently in the process of developing a third party teaching agreement with Aviation Australia to deliver these units at the Brisbane and Cairns campuses. Once that agreement is finalised, the units can be offered at CQU and delivered by AA at their campuses.

Introductory Units

Available units
Students must complete the following compulsory units:
ENTA11011 Analytical Methods and Physics for Aircraft Maintenance
ENTA11019 Aircraft Materials and Hardware
ENTA11018 Aircraft Structural Maintenance Practices
ENTA11017 Electronic Fundamentals for Aircraft Structural Maintenance
ENTA11013 Electrical Fundamentals for Aircraft Maintenance
ENTA11020 Instrumentation Systems for Aircraft Structural Maintenance
ENTA11015 Human Factors and Aviation Legislation

Intermediate Units

Available units
Students must complete the following compulsory units:
ENTA12018 Gas Turbine Engines
ENTA12019 Propeller Maintenance
ENTA12020 Aerodynamics and Airframe Systems
ENTA12021 Aircraft Structures and Systems

Advanced Units

Available units
Students must complete the following compulsory units:
ENTA13026 Advanced Engineering Design
ENTG13003 Advanced Materials in Aviation
ENTA13022 Remote Piloted Aircraft Systems
ENEM13012 Maintenance Engineering
ENTA13024 Thermofluid Engineering for Aviation
ENTA13025 Sustainable Energy for Aviation

Undergraduate Thesis

At the end of your course, you will complete an undergraduate thesis over two terms under the supervision of an academic adviser. Your thesis confirms your ability to work as an Engineering Technologist. You should organise an Academic Adviser and a suitable project topic before commencing the thesis planning unit. It is strongly recommended to decide your topic based on your career interests.

Available units
Students must complete the following compulsory units:
ENTG13002 Engineering Technology Project Planning
ENTG13001 Engineering Technology Project Implementation
Number of units: 19 Total credit points: 120

If you are studying the Municipal Transportation plug-in the total number of Major units you need to complete is 18.

Introductory units

Available units
Students must complete the following compulsory units:
MATH11247 Foundation Mathematics
MATH11219 Applied Calculus
ENEG11008 Materials for Engineers
ENEG11006 Engineering Statics
ENEG11009 Fundamentals of Sustainable Energy

Intermediate Units

Available units
Students must complete the following compulsory units:
ENEC12008 Geotechnical Engineering
ENEG12007 Creative Engineering
ENEC12009 Engineering Surveying and Spatial Sciences
ENEC12010 Hydraulics and Hydrology
ENEC12011 Transport Systems
ENEC12012 Stress Analysis
ENEG13002 Engineering Futures

Plug-ins

You must study 1 plug-in. You can choose from Municipal Transportation or Structural. Each plug-in is 30cp.

Municipal Transportation Plug-in

ENEC14016 and ENEC14017 are double credit-point (12cp) units intended to provide an authentic project experience.

Available units
Students must complete the following compulsory units:
ENEC13014 Water Supply and Wastewater Technology
ENEC14016 Traffic and Transportation Engineering
ENEC14017 Water Resources Engineering

Structural Plug-in

ENEC14014 is a double credit-point (12cp) unit intended to provide an authentic project experience.

Available units
Students must complete the following compulsory units:
ENEC13015 Steel and Timber Design
ENEC13016 Concrete Technology and Design
ENEC13017 Advanced Structural Analysis
ENEC14014 Structural and Geotechnical Design

Elective Units

There is one elective unit. The More Details tab contains a link to the Course Planner Site where all pre-approved electives are listed. Contact the Head of Course if you want to discuss studying a unit not on the pre-approved list.

Undergraduate Thesis

At the end of your course, you will complete an undergraduate thesis over two terms under the supervision of an academic adviser. Your thesis confirms your ability to work as an Engineering Technologist. You should organise an Academic Adviser and a suitable project topic before commencing the thesis planning unit. It is strongly recommended to decide your topic based on your career interests.

Available units
Students must complete the following compulsory units:
ENTG13002 Engineering Technology Project Planning
ENTG13001 Engineering Technology Project Implementation
Number of units: 19 Total credit points: 120

Introductory units

Available units
Students must complete the following compulsory units:
MATH11247 Foundation Mathematics
MATH11219 Applied Calculus
ENEG11008 Materials for Engineers
ENEG11006 Engineering Statics
ENEG11009 Fundamentals of Sustainable Energy

 

Intermediate Units

Available units
Students must complete the following compulsory units:
ENEE12014 Electrical Circuit Analysis
ENEE12015 Electrical Power Engineering
ENEG12007 Creative Engineering
ENEE12016 Signals and Systems
ENEX12002 Introductory Electronics
MATH12225 Applied Computational Modelling
ENEX13002 Power Electronics
ENEG13002 Engineering Futures

Plug-ins

You must study 1 plug-in. You can choose from Electrical Control or Electrical Power. Each plug-in is 30cp.

Electrical Control Plug-in

ENEE14006 is a double credit-point (12cp) unit intended to provide an authentic project experience.

Available units
Students must complete the following compulsory units:
ENEE13019 Control Systems Analysis and Design
ENEE13022 Communication Technology
ENEX13001 Industrial Control and Automation
ENEE14006 Embedded Microcontrollers

Electrical Power Plug-in

ENEE14007 is a double credit-point (12cp) unit intended to provide an authentic project experience.

Available units
Students must complete the following compulsory units:
ENEE13016 Power System Protection
ENEE13021 Power System Analysis and Design
ENEE13022 Communication Technology
ENEE14007 Electrical Machines and Drives Applications

Undergraduate Thesis

At the end of your course, you will complete an undergraduate thesis over two terms under the supervision of an academic adviser. Your thesis confirms your ability to work as an Engineering Technologist. You should organise an Academic Adviser and a suitable project topic before commencing the thesis planning unit. It is strongly recommended to decide your topic based on your career interests.

Available units
Students must complete the following compulsory units:
ENTG13002 Engineering Technology Project Planning
ENTG13001 Engineering Technology Project Implementation
Number of units: 19 Total credit points: 120

Introductory units

Available units
Students must complete the following compulsory units:
MATH11247 Foundation Mathematics
MATH11219 Applied Calculus
ENEG11008 Materials for Engineers
ENEG11006 Engineering Statics
ENEG11009 Fundamentals of Sustainable Energy

Intermediate Units

Available units
Students must complete the following compulsory units:
ENEG12007 Creative Engineering
ENEM12006 Fluid Mechanics
ENEM12008 Solid Materials Handling
ENEM12009 Structural Mechanics
ENEM12010 Engineering Dynamics
MATH12225 Applied Computational Modelling
ENEM13018 Materials and Manufacturing
ENEG13002 Engineering Futures

Plug-ins

You must study 1 plug-in. You can choose from Mechanical Design or Mechanical Energy. Each plug-in is 30cp.

Mechanical Design Pug-in

ENEM14015 is a double credit-point (12cp) unit intended to provide an authentic project experience.

Available units
Students must complete the following compulsory units:
ENEX13003 Mechanical Design Practice
ENEM13015 Design of Machine Elements
ENEM14015 Dynamic System Modelling and Control

Mechanical Energy Plug-in

ENEM14014 is a double credit-point (12cp) unit intended to provide an authentic project experience.

Available units
Students must complete the following compulsory units:
ENEM13014 Thermodynamics
ENEM14011 Energy Conversion
ENEM14014 Capstone Thermofluid Engineering

Elective Units

There is one elective unit. The More Details tab contains a link to the Course Planner Site where all pre-approved electives are listed. Contact the Head of Course if you want to discuss studying a unit not on the pre-approved list.

Undergraduate Thesis

At the end of your course, you will complete an undergraduate thesis over two terms under the supervision of an academic adviser. Your thesis confirms your ability to work as an Engineering Technologist. You should organise an Academic Adviser and a suitable project topic before commencing the thesis planning unit. It is strongly recommended to decide your topic based on your career interests.

Available units
Students must complete the following compulsory units:
ENTG13002 Engineering Technology Project Planning
ENTG13001 Engineering Technology Project Implementation
More Details

Engineering Undergraduate Course Moodle

All students should regularly check the Engineering Undergraduate Course Moodle for the latest information, including key staff contacts, intensive class schedules, student mobility and exchange opportunities, cadetships and scholarships, social events and student societies, and final-year project advice.

Course Planners

Course planners are online for each major, full-time or part-time study option, and commencing term. Students are also encouraged to create a personalised planner if obtaining credit, advance standing or studying at an alternate pace. The Engineering Undergraduate Course Moodle includes instructions for obtaining your personalised course planner.

Mobility and Exchange

This course supports overseas study through a short-term mobility practicum as part of the elective ENEG13001 Humanitarian Engineering Project or a semester exchange experience at an approved overseas institution. The Engineering Undergraduate Course Moodle includes current mobility and exchange programs, application instructions and staff contacts for inquiries.

Cadetships

Flexible and online course delivery options provide support for working students. The CQUniversity Engineering Cadetship model allows students to enter the engineering workforce from their first year of study. Cadets can extend their learning by directly applying new knowledge to workplace scenarios and learning from working with engineers and associates. All cadets are paid, and many are also offered full sponsorship of course tuition fees. Cadetship opportunities are posted on the CQUniversity Engineering Cadetships Website.

Course Articulation

The undergraduate engineering courses include a common foundation year, allowing students to articulate between courses with minimal or no additional study should their circumstances or career aspirations change. Students may also change their major during their first year of study. The Engineering Undergraduate Course Moodle contains instructions and staff contacts for inquiries.

High School Course Pathways

Students can consider taking any of the several pathways designed to ease their transition into the course. Pathways for high school graduates commence in Year 11 and include reduced mathematics units to study by completing Mathematical Methods, early study of engineering units while at high school through CQUniversity’s Start Uni Now (SUN) program, and credit for other units by completing Engineering General and/or Design General with extra-curricular activities if supported at high school. Prospective students can request further information on engineering course pathways by emailing our college professional team SETAdmin@cqu.edu.au).

Mature-age Course Pathways

Mature-age students who do not meet the course entry requirements should contact our college professional team (SETAdmin@cqu.edu.au) to explore alternate pathways before committing to CQUniversity’s Skills for Tertiary Education Preparation Studies (STEPS) program.

Distinction

The distinction level is determined by the grade point average (GPA) of the first attempts of all second- and third-level units with numerical codes 12### or 13###. To be eligible for distinction, students must study at least 72 credit units at CQUniversity and achieve an overall GPA of at least 5.00.

Engineering Professional Practice

This course includes mandatory professional practice, as explained in the handbook.

Additional entry requirements

Students must have a Diploma of Aircraft Maintenance to study either of the two Aircraft Maintenance Majors. This Diploma will award 1.5 years of advanced standing, enabling course completion in 1.5 years of full-time study.