CC31 - Bachelor of Engineering (Honours)

Overview

Compulsory Residential School

Some units in this course require you to attend a compulsory Residential School or Work Integrated Learning. Please see Course Features in the Getting Started tab for further information.

Course Overview

The Bachelor of Engineering (Honours) has a strong focus on learning in context so you will apply theory to authentic scenarios throughout your course.

In your first year, you will develop skills in problem solving, teamwork and professional practice together with learning foundation technical content. In Term 2 of Year 1, you will undertake an authentic industry project with work integrated learning. By the end of first year, you will have experienced engineering projects from different disciplines which will assist you to decide which engineering discipline you wish to pursue: civil, electrical, mechanical, mechatronics or mining.

Second year is all about gaining in-depth discipline-specific knowledge and skills. Every unit you study will include a mini project and at least one unit each term will include a major project which will give you an opportunity to apply the theoretical knowledge you have gained in the unit to deliver a tangible engineering outcome. Should you decide during second year that you do not wish to complete the Bachelor of Engineering (Honours), you can apply to change course to an Associate Degree of Engineering in your chosen discipline and receive credits for relevant units already completed under the bachelor degree.

In the third and fourth years of your course, you will develop a deeper understanding of the foundation knowledge that you gained in first and second year. In some units, you will explore specific aspects of your discipline. You will also complete 3 project units where you will work on authentic projects, sometimes with an industry mentor. In the civil, electrical and mechanical majors, you will have the opportunity to choose electives that will enhance your career prospects in your chosen field. Finally, you will complete a major individual project to confirm your ability to work as a professional engineer.

This course is available in on-campus and distance mode, giving you flexibility to study even if working or living in a remote location.

The Bachelor of Engineering (Honours) may also be used as an alternative entry pathway to Bachelor of Engineering Co-op (Honours) and Diploma of Professional Practice (Engineering) for students who do not meet the entry requirements for that course.

Career Information

As a professional engineer you can be a driver of change in society and be not only responsible for technological change, but also the impact it has on communities, society and the environment in general. Professional engineers work with people, they listen, then set about solving problems for people and communities.

Civil engineers are typically involved in planning design and maintenance of physical infrastructure systems including the construction of buildings and bridges, transport and water resource systems, sewage and industrial waste systems, harbours and railways.

Mechanical engineers are typically involved in planning, design, installation, maintenance and operation of machines, thermodynamic and combustion systems, fluid systems, materials handling systems, manufacturing equipment and process plant.

Electrical engineers typically specialise in systems design, development and maintenance of systems associated with electrical power and energy including electricity generation and distribution, telecommunications, instrumentation and control, microprocessors and electronics.

Mining engineers are typically involved with the design, planning and operations of mines and mineral and coal processing plants.

Course Details
Duration 4 years full-time or 8 years part-time
Credit Points that Must be Earned 192
Number of Units Required CQUniversity uses the concept of credits to express the amount of study required for a particular course and individual units. The number of units varies between courses. Units in undergraduate courses normally consist of 6 points of credit or multiples thereof (e.g. 12, 18, 24).
Expected Hours of Study One point of credit is equivalent to an expectation of approximately two hours of student work per week in a term.
Course Type Undergraduate Award
Qualification (post nominal) BEng (Hons)
AQF Level Level 8: Bachelor Honours Degree

Admission Codes

Domestic Students
Tertiary Admission Centre Codes (TAC) Codes
  • QLD - Bundaberg - 810312
  • QLD - Cairns - 820315
  • VIC - Distance - 1700110571 
  • QLD - Cairns - 820319
  • QLD - Gladstone - 830312
  • QLD - Rockhampton - 850312
  • QLD - Distance - 850319
  • NSW - Distance - 160341
  • NSW - Distance - 160349
  • QLD - Mackay - 840313
  • QLD - Gladstone - 830313
  • QLD - Mackay - 840312
  • QLD - Rockhampton - 850313
  • QLD - Distance - 850315
International Students
CRICOS Codes
  • GLD - 083583G
  • ROK - 083583G
  • MKY - 083583G
  • BDG - 083583G
  • CNS - 083583G
Where and when can I start?
Units offered internally at the below campuses may be delivered using a combination of face-to-face and video conferencing style teaching.
Units offered via MIX mode are delivered online and require compulsory attendance of site-specific learning activities such as on-campus residential schools, placements and/or work integrated learning. See Course Features tab for further information. Online units are delivered using online resources only.
Please Click Here for more information.
The following tables list the courses availabilities by location and term. Directing your pointer over your preferred location will provide further information if this course is not available for the full duration. Please be sure to also check individual unit availability by location and term prior to enrolling.

Domestic Availability

Term 2 - 2019

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 1 - 2019

Bundaberg
Cairns
Gladstone
Mackay
Online
Rockhampton

Term 2 - 2018

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some units in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Bundaberg
Cairns
Distance
Gladstone
Mackay
Rockhampton

Term 1 - 2018

Bundaberg
Cairns
Distance
Gladstone
Mackay
Rockhampton

Term 2 - 2017

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some units in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Bundaberg
Cairns
Distance
Gladstone
Mackay
Rockhampton

Term 1 - 2017

Bundaberg
Cairns
Distance
Gladstone
Mackay
Rockhampton

Term 2 - 2016

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some units in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Bundaberg
Cairns
Distance
Gladstone
Mackay
Rockhampton

Term 1 - 2016

Bundaberg
Cairns
Distance
Gladstone
Mackay
Rockhampton

Term 2 - 2015

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some courses in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Bundaberg
Distance
Gladstone
Mackay
Rockhampton

Term 1 - 2015

Bundaberg
Distance
Gladstone
Mackay
Rockhampton
Show Less

International Availability

Term 2 - 2019

Bundaberg
Cairns
Gladstone
Mackay
Rockhampton

Term 1 - 2019

Bundaberg
Cairns
Gladstone
Mackay
Rockhampton

Term 2 - 2018

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some units in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Bundaberg
Cairns
Distance
Gladstone
Mackay
Rockhampton

Term 1 - 2018

Bundaberg
Cairns
Distance
Gladstone
Mackay
Rockhampton

Term 2 - 2017

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some units in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Bundaberg
Distance
Gladstone
Mackay
Rockhampton

Term 1 - 2017

Bundaberg
Distance
Gladstone
Mackay
Rockhampton

Term 2 - 2016

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some units in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Bundaberg
Distance
Gladstone
Mackay
Rockhampton

Term 1 - 2016

Bundaberg
Distance
Gladstone
Mackay
Rockhampton

Term 2 - 2015

Term 2 intake is only available for students with advanced standing. Students must hold a Diploma or above in an Engineering related field or have successfully completed at least some courses in an engineering degree to be eligible. Students entering with advanced standing may have a reduced study load in some terms depending on the credit given for previous study.
Bundaberg
Distance
Gladstone
Mackay
Rockhampton

Term 1 - 2015

Bundaberg
Distance
Gladstone
Mackay
Rockhampton
Show Less
For any problems regarding admissions availability for the selected course please contact 13 CQUni (13 27 86) or send us an email at http://contactus.cqu.edu.au/
What do I need to start?
Entry Requirements

Domestic students

Prerequisite study: English (4, SA), Mathematics B (4, SA)

Note:

Students should have a mathematical knowledge equal to a passing grade in Queensland Mathematics B or an interstate or TAFE equivalent. Prospective students who do not believe they can meet this requirement should contact CQUniversity to discuss available bridging courses.


If you were not born in Australia, Canada, New Zealand, United Kingdom, Ireland, South Africa or United States of America you are required to meet the English Language Proficiency requirements set by the University.

 

Applicants are required to provide evidence of completion within the last 5 years of:

·         a secondary qualification (Year 11 or 12, or equivalent), or

·         bachelor level qualification study for a period of at least 2 years fulltime with a minimum overall GPA 4.0

completed within Australia, Canada, New Zealand, United Kingdom, South Africa, Ireland, or United States of America, which will meet the English proficiency.

 

If you do not satisfy any of the above you will need to undertake an English language proficiency test and achieve the following scores as below.

·         An International English Language Testing System (IELTS Academic) overall band score of at least 6.0 overall with a minimum 6.0 for Reading and Writing and 6.0 for Speaking and Listening, or

·         An Occupational English Test with Grades A or B only in each of the four components.

English test results remain valid for no more than two years between final examination date and the date of commencement of study, and must appear on a single result certificate.

 

Each student will be assessed individually.

Security Requirements
No information available at this time
Health Requirements
No information available at this time
Assumed Knowledge

Recommended study: Physics, Graphics, Mathematics C

Course Features

Awards and Accreditation

Interim Awards Not applicable
Exit Awards Not applicable
Professional Accreditation

The civil, electrical and mechanical majors in this course are accredited by Engineers Australia as meeting Stage 1 Competency Standard for Professional Engineer.

Learned Society Accreditiation Not applicable

Residential School Requirements

Compulsory Residential School All units in this course are offered in distance mode. Some units will have a compulsory Residential Schools for distance students. These Residential Schools give students an opportunity to develop and demonstrate practical skills. The Engineers Australia accreditation guidelines recommend minimum of 40 days of on-campus experience for a professional engineering course offered in distance mode.
Click here to view all Residential Schools

Practicum/Work Placement

- There is a requirement for 12 weeks of industry experience prior to graduation. Students must submit a formal report as per the Engineering Practice document including verification of the type of work undertaken. This is in accordance with current recommendations of the accrediting body, Engineers Australia.

Previous Enrolments

Year Number of Students
2018 325
2017 334
2016 319
2015 330
Core Learning Outcomes
Please refer to the Core Structure Learning Outcomes
Civil Learning Outcomes
  • 1. Design and analyse complex structures that comply with relevant Australian Standards
  • 2. Analyse and design geotechnical engineering elements using fundamental concepts including soil classification and properties
  • 3. Analyse and design water resource infrastructure by applying hydraulics and hydrology concepts considering Australian Rainfall and Runoff standards
  • 4. Evaluate traffic data and road safety issues and apply relevant standards to design transportation infrastructure
  • 5. Apply mathematics, science and engineering skills to engineering disciplines
  • 6. Scope, research, plan, manage and successfully complete engineering projects autonomously or in teams
  • 7. Demonstrate professional skills for civil engineering graduates including effective management of risks, promoting sustainable and ethical practice, and disseminating outcomes through reports, presentations and technical drawings.
  Course Learning Outcomes
Australian Qualifications Framework Descriptors 1 2 3 4 5 6 7
10. APPLICATION OF KNOWLEDGE & SKILL Plan and execute project work and/or a piece of research and scholarship with some independence
1. KNOWLEDGE Have coherent and advanced knowledge of the underlying principles and concepts in one or more disciplines and knowledge of research principles and methods
2. SKILLS Have cognitive skills to review, analyse, consolidate and synthesise knowledge to identify and provide solutions to complex problems with intellectual independence
3. SKILLS Have cognitive and technical skills to demonstrate a broad understanding of a body of knowledge and theoretical concepts with advanced understanding in some areas
4. SKILLS Have cognitive skills to exercise critical thinking and judgement in developing new understanding
5. SKILLS Have technical skills to design and use research in a project
6. SKILLS Have communication skills to present a clear and coherent exposition of knowledge and ideas to a variety of audiences
7. APPLICATION OF KNOWLEDGE & SKILLS Demonstrate initiative and judgement in professional practice and/or scholarship
8. APPLICATION OF KNOWLEDGE & SKILLS Be able to adapt knowledge and skills in diverse contexts
9. APPLICATION OF KNOWLEDGE & SKILL Be responsible and accountable for own learning and practice and in collaboration with others within broad parameters
Electrical Learning Outcomes
  • 1. Analyse and solve complex electrical power systems problems associated with generation, transmission, distribution, protection and renewable energy integration
  • 2. Design and analyse complex industrial electrical machines and drive applications
  • 3. Analyse, design, implement and test instrumentation and control systems using industry standard software and hardware tools
  • 4. Design, analyse and implement complex circuits, embedded systems and industrial communication networks to provide solutions to industrial applications
  • 5. Apply mathematics, science and engineering skills to engineering disciplines
  • 6. Scope, research, plan, manage and successfully complete engineering projects autonomously or in teams
  • 7. Demonstrate professional skills for electrical engineering graduates including effective management of risks, promoting sustainable and ethical practice, and disseminating outcomes through reports, presentations and technical drawings.
  Course Learning Outcomes
Australian Qualifications Framework Descriptors 1 2 3 4 5 6 7
10. APPLICATION OF KNOWLEDGE & SKILL Plan and execute project work and/or a piece of research and scholarship with some independence
1. KNOWLEDGE Have coherent and advanced knowledge of the underlying principles and concepts in one or more disciplines and knowledge of research principles and methods
2. SKILLS Have cognitive skills to review, analyse, consolidate and synthesise knowledge to identify and provide solutions to complex problems with intellectual independence
3. SKILLS Have cognitive and technical skills to demonstrate a broad understanding of a body of knowledge and theoretical concepts with advanced understanding in some areas
4. SKILLS Have cognitive skills to exercise critical thinking and judgement in developing new understanding
5. SKILLS Have technical skills to design and use research in a project
6. SKILLS Have communication skills to present a clear and coherent exposition of knowledge and ideas to a variety of audiences
7. APPLICATION OF KNOWLEDGE & SKILLS Demonstrate initiative and judgement in professional practice and/or scholarship
8. APPLICATION OF KNOWLEDGE & SKILLS Be able to adapt knowledge and skills in diverse contexts
9. APPLICATION OF KNOWLEDGE & SKILL Be responsible and accountable for own learning and practice and in collaboration with others within broad parameters
Mechanical Learning Outcomes
  • 1. Apply mathematics, science and engineering skills to engineering disciplines
  • 2. Design and analyse machine components and systems by applying principles of materials, statics, stress analysis and machine design using relevant design standards and codes
  • 3. Apply dynamic modelling, control and simulation methods to design machine components and systems
  • 4. Design and analyse energy generation and energy conversion systems through the application of thermodynamics and heat transfer principles
  • 5. Design and model fluid machinery by applying fluid mechanics and hydraulics principles
  • 6. Scope, research, plan, manage and successfully complete engineering projects autonomously and as part of teams
  • 7. Demonstrate professional skills for mechanical engineering graduates including effective management of risks, promoting sustainable and ethical practice, and disseminating outcomes through reports, presentations and technical drawings.
  Course Learning Outcomes
Australian Qualifications Framework Descriptors 1 2 3 4 5 6 7
10. APPLICATION OF KNOWLEDGE & SKILL Plan and execute project work and/or a piece of research and scholarship with some independence
1. KNOWLEDGE Have coherent and advanced knowledge of the underlying principles and concepts in one or more disciplines and knowledge of research principles and methods
2. SKILLS Have cognitive skills to review, analyse, consolidate and synthesise knowledge to identify and provide solutions to complex problems with intellectual independence
3. SKILLS Have cognitive and technical skills to demonstrate a broad understanding of a body of knowledge and theoretical concepts with advanced understanding in some areas
4. SKILLS Have cognitive skills to exercise critical thinking and judgement in developing new understanding
5. SKILLS Have technical skills to design and use research in a project
6. SKILLS Have communication skills to present a clear and coherent exposition of knowledge and ideas to a variety of audiences
7. APPLICATION OF KNOWLEDGE & SKILLS Demonstrate initiative and judgement in professional practice and/or scholarship
8. APPLICATION OF KNOWLEDGE & SKILLS Be able to adapt knowledge and skills in diverse contexts
9. APPLICATION OF KNOWLEDGE & SKILL Be responsible and accountable for own learning and practice and in collaboration with others within broad parameters
Mechatronics Learning Outcomes
  • 1. Solve authentic problems through analyses, design and programming of robotic systems
  • 2. Analyse, design and build instrumentation and automated control systems to meet desired industrial needs within realistic constraints
  • 3. Analyse complex scenarios and design mechatronics solutions using appropriate industry standard software, hardware and embedded-systems development tools
  • 4. Analyse mechatronics systems including parasitics and uncertainties by applying the principles of mechanical engineering design
  • 5. Apply mathematics, science and engineering skills to engineering disciplines
  • 6. Scope, research, plan, manage and successfully complete engineering projects autonomously or in teams
  • 7. Demonstrate professional skills for mechatronics engineering graduates including effective management of risks, promoting sustainable and ethical practice, and disseminating outcomes through reports, presentations and technical drawings.
  Course Learning Outcomes
Australian Qualifications Framework Descriptors 1 2 3 4 5 6 7
10. APPLICATION OF KNOWLEDGE & SKILL Plan and execute project work and/or a piece of research and scholarship with some independence
1. KNOWLEDGE Have coherent and advanced knowledge of the underlying principles and concepts in one or more disciplines and knowledge of research principles and methods
2. SKILLS Have cognitive skills to review, analyse, consolidate and synthesise knowledge to identify and provide solutions to complex problems with intellectual independence
3. SKILLS Have cognitive and technical skills to demonstrate a broad understanding of a body of knowledge and theoretical concepts with advanced understanding in some areas
4. SKILLS Have cognitive skills to exercise critical thinking and judgement in developing new understanding
5. SKILLS Have technical skills to design and use research in a project
6. SKILLS Have communication skills to present a clear and coherent exposition of knowledge and ideas to a variety of audiences
7. APPLICATION OF KNOWLEDGE & SKILLS Demonstrate initiative and judgement in professional practice and/or scholarship
8. APPLICATION OF KNOWLEDGE & SKILLS Be able to adapt knowledge and skills in diverse contexts
9. APPLICATION OF KNOWLEDGE & SKILL Be responsible and accountable for own learning and practice and in collaboration with others within broad parameters
Mining Learning Outcomes
  • 1. This is not a complete course so it has no Course Learning Outcomes. Students do not graduate from this course but transfer to the University of Queensland course.
  Course Learning Outcomes
Australian Qualifications Framework Descriptors 1
10. APPLICATION OF KNOWLEDGE & SKILL Plan and execute project work and/or a piece of research and scholarship with some independence
1. KNOWLEDGE Have coherent and advanced knowledge of the underlying principles and concepts in one or more disciplines and knowledge of research principles and methods
2. SKILLS Have cognitive skills to review, analyse, consolidate and synthesise knowledge to identify and provide solutions to complex problems with intellectual independence
3. SKILLS Have cognitive and technical skills to demonstrate a broad understanding of a body of knowledge and theoretical concepts with advanced understanding in some areas
4. SKILLS Have cognitive skills to exercise critical thinking and judgement in developing new understanding
5. SKILLS Have technical skills to design and use research in a project
6. SKILLS Have communication skills to present a clear and coherent exposition of knowledge and ideas to a variety of audiences
7. APPLICATION OF KNOWLEDGE & SKILLS Demonstrate initiative and judgement in professional practice and/or scholarship
8. APPLICATION OF KNOWLEDGE & SKILLS Be able to adapt knowledge and skills in diverse contexts
9. APPLICATION OF KNOWLEDGE & SKILL Be responsible and accountable for own learning and practice and in collaboration with others within broad parameters
Course Structure

In order to complete this course, you must:

  1. Complete the core structure
  2. Complete 1 major
Number of units: 7 Total credit points: 48

In order to complete this course, you must:

  1. Complete the Core Structure
  2. Complete 1 Major

The More Details tab has a link to the Course Planners for this course.

Note that full-time students generally enrol in 24uc per term and part-time students (working more than 20 hours a week) generally enrol in a half-load i.e. 12uc per term.

In the Core structure, Fundamentals of Professional Engineering Practice is a 12uc unit which assists your transition to university study. All other Core units are 6uc.

Available units
Students must complete the following compulsory units:
ENEG11005 Fundamentals of Professional Engineering
MATH11218 Applied Mathematics
ENEG11006 Engineering Statics
ENEG11007 Engineering Industry Project Investigation
ENEG11008 Materials for Engineers
MATH11219 Applied Calculus
ENEG11009 Fundamentals of Energy and Electricity
Course Structure

In order to complete this course, you must:

  1. Complete the core structure
  2. Complete 1 major
Number of units: 20 Total credit points: 144

In the civil major, you will study the following intermediate units.

Available units
Students must complete the following compulsory units:
ENEG12007 Design and Project Management
ENEC12009 Engineering Surveying
ENEC12010 Hydraulics and Hydrology
MATH12222 Advanced Mathematical Applications
MATH12225 Applied Computational Modelling
ENEC12008 Geotechnical Engineering
ENEC12011 Transport Systems
ENEC12012 Stress Analysis

You will study the following advanced units.

Please note that ENEC14014, ENEC14016 and ENEC14017 are double credit-point (12uc) units intended to provide an authentic project experience.

Available units
Students must complete the following compulsory units:
ENEC13015 Steel and Timber Design
ENEC13017 Advanced Structural Analysis
ENEC13016 Concrete Technology and Design
ENEC13014 Water Supply and Wastewater Technology
ENEC14014 Structural and Geotechnical Design
ENEC14016 Traffic and Transportation Engineering
ENEC14017 Water Resources Engineering

In addition to the units listed above, there are 3 elective slots in the civil major.

There is a pre-approved set of electives listed in the Course Planner (the link is in the More Details tab). One of your electives must be a professional practice elective. Should you wish to complete an elective not on the pre-approved list, contact your Course Advisor to discuss.

At the end of your course, you will complete a final year engineering project over 2 terms. The final year engineering project confirms your ability to work as a professional engineer.

Please see More Details section for information on enrolling into the final year project units ENEG14003 and ENEG14005.

Available units
Students must complete the following compulsory units:
ENEG14003 Engineering Honours Project Planning
ENEG14005 Engineering Honours Project Implementation
Course Structure

In order to complete this course, you must:

  1. Complete the core structure
  2. Complete 1 major
Number of units: 20 Total credit points: 144

In the electrical major, you will study the following intermediate units.

Available units
Students must complete the following compulsory units:
ENEG12007 Design and Project Management
ENEE12014 Electrical Circuit Analysis
MATH12222 Advanced Mathematical Applications
MATH12225 Applied Computational Modelling
ENEE12015 Electrical Power Engineering
ENEE12016 Signals and Systems
ENEE13018 Analogue Electronics
ENEE13020 Digital Electronics

You will study the following advanced units.

Please note that ENEE14005, ENEE14006 and ENEE14007 are double credit-point (12uc) units intended to provide an authentic project experience.

Available units
Students must complete the following compulsory units:
ENEE13016 Power System Protection
ENEE13019 Control Systems Analysis and Design
ENEE13021 Power System Analysis and Design
ENEE13022 Communication Systems
ENEE14005 Capstone Power and Control Design
ENEE14006 Embedded Microcontrollers
ENEE14007 Electrical Machines and Drives Applications

In addition to the units listed above, there are 3 elective slots in the electrical major.

There is a pre-approved set of electives listed in the Course Planner (the link is in the More Details tab). One of your electives must be a professional practice elective. Should you wish to complete an elective not on the pre-approved list, contact your Course Advisor to discuss.

At the end of your course, you will complete a final year engineering project over 2 terms. The final year engineering project confirms your ability to work as a professional engineer.

Please see More Details section for information on enrolling into the final year project units ENEG14003 and ENEG14005.

Available units
Students must complete the following compulsory units:
ENEG14003 Engineering Honours Project Planning
ENEG14005 Engineering Honours Project Implementation
Course Structure

In order to complete this course, you must:

  1. Complete the core structure
  2. Complete 1 major
Number of units: 20 Total credit points: 144

In the mechanical major, you will study the following intermediate units.

Available units
Students must complete the following compulsory units:
ENEG12007 Design and Project Management
ENEM12006 Fluid Mechanics
MATH12222 Advanced Mathematical Applications
MATH12225 Applied Computational Modelling
ENEM12009 Structural Mechanics
ENEM12010 Engineering Dynamics
ENEM13014 Thermodynamics
ENEM13018 Materials and Manufacturing

You will study the following advanced units.

Please note that ENEM14014, ENEM14015 and ENEM14016 are double credit-point (12uc) units intended to provide an authentic project experience.

Available units
Students must complete the following compulsory units:
ENEM13012 Maintenance Engineering
ENEM12008 Solid Materials Handling
ENEM14014 Capstone Thermofluid Engineering
ENEM14015 Dynamic System Modelling and Control
ENEM14016 Fluid Machinery
ENEM13015 Design of Machine Elements
ENEM14011 Energy Conversion

In addition to the units listed above, there are 3 elective slots in the mechanical major.

There is a pre-approved set of electives listed in the Course Planner (the link is in the More Details tab). One of your electives must be a professional practice elective. Should you wish to complete an elective not on the pre-approved list, contact your Course Advisor to discuss.

At the end of your course, you will complete a final year engineering project over 2 terms. The final year engineering project confirms your ability to work as a professional engineer.

Please see More Details section for information on enrolling into the final year project units ENEG14003 and ENEG14005.

Available units
Students must complete the following compulsory units:
ENEG14003 Engineering Honours Project Planning
ENEG14005 Engineering Honours Project Implementation
Course Structure

In order to complete this course, you must:

  1. Complete the core structure
  2. Complete 1 major

Mechatronics Major

Number of units: 21 Total credit points: 144

In the mechatronics major, you will study the following intermediate units.

Available units
Students must complete the following compulsory units:
ENEG12007 Design and Project Management
ENEE12014 Electrical Circuit Analysis
ENEM12010 Engineering Dynamics
MATH12222 Advanced Mathematical Applications
MATH12225 Applied Computational Modelling
ENEX12002 Introductory Electronics
ENEE12016 Signals and Systems
ENEX12001 Electrical Power and Machines
ENEM12009 Structural Mechanics

You will study the following advanced units.

Please note that ENEX14001 Mechatronics Systems Design and ENEE14006 Embedded Microcontrollers are double credit-point (12uc) units intended to provide an authentic project experience.

Available units
Students must complete the following compulsory units:
ENEX13001 Instrumentation and Industrial Automation
ENEX13002 Power Electronics
ENEX13003 Design of Mechatronics Elements
ENEX13004 Advanced Dynamics and Robotics
ENEE13019 Control Systems Analysis and Design
ENEX13005 Machine Design and Vibrations
ENEX13006 Thermofluids Theory and Applications
ENEE14006 Embedded Microcontrollers
ENEX14001 Mechatronics Systems Design

In addition to the units listed above, there is 1 elective slot in the mechatronics major.

This is a professional practice elective and must be one of 'Engineering Business Fundamentals', 'Engineering Employment Preparation', or 'Engineering Supervisor Development'.

Available units
Students may choose to do any of the following:
ENEP11007 Engineering Employment Preparation
ENEP12007 Engineering Business Fundamentals
ENEP12008 Engineering Leadership

At the end of your course, you will complete a final year engineering project over 2 terms. The final year engineering project confirms your ability to work as a professional engineer.

Please see More Details section for information on enrolling into the final year project units ENEG14003 and ENEG14005.

Available units
Students must complete the following compulsory units:
ENEG14003 Engineering Honours Project Planning
ENEG14005 Engineering Honours Project Implementation
Course Structure

In order to complete this course, you must:

  1. Complete the core structure
  2. Complete 1 major
Number of units: 8 Total credit points: 48

After successfully completing the first two years of study at CQUniversity completing the Core units and the units listed below, students then enrol and transfer their unit credits via QTAC to the University of Queensland where they complete their final two years of study in mining engineering. Under the CQUni - UQ partnership, the mining specialisation is unable to accept international students through CRICOS.

Please note: Mining students need to apply directly to QTAC for third year entry and credit towards a University of Queensland mining engineering degree. The University of Queensland does not offer its units in distance mode so students beginning this major will need to be physically located in Brisbane for the final two years of their study.

Available units
Students must complete the following compulsory units:
MATH12222 Advanced Mathematical Applications
ENEM12006 Fluid Mechanics
STAT11048 Essential Statistics
ENEM12010 Engineering Dynamics
ENEG12007 Design and Project Management
ENAR12014 Introduction to Mining Technology and Mineral Processing
ENAR12013 Mine Planning and Design
ENEC12008 Geotechnical Engineering

After successfully completing the first two years of study at CQUniversity as above, students then enrol and transfer their unit credits via QTAC to the University of Queensland where they complete their final two years of study in mining engineering.

More Details

Entry Requirements

If you do not have this requirement, Intermediate Mathematics for University and Technical Mathematics for University is deemed equivalent to Maths B.  You may also need to do Fundamental Mathematics for University before commencing Intermediate Mathematics for University and Technical Mathematics for University. You can contact the Academic Learning Centre - Mathematics to discuss your previous maths history to determine if you are required to complete any of the above.

 

Course Planners

Click here for part-time and full-time planners.

Students who commenced prior to 2016 should refer to individual course planners.

Please click here for the list of approved Engineering electives.

Completing your Final Year Project - ENEG14003 Engineering Honours Project Planning

In line with Higher Education Division Policy for enrolment into Project based units you will need to follow the process below prior enrolment into the relevant unit:-

  1. Develop the project proposal
  2. Obtain an Academic Supervisor for the project
  3. Determine your project title

Once you have made these arrangements, provide this information to your Unit Coordinator. Once approved you will be manually enrolled in the relevant unit by your Student Advisor (Courses and Careers).

ENEG14005 Engineering Honours Project Implementation

  1. Confirm Project Proposal is continuation of previous
  2. Advise name of your Academic Supervisor for the project
  3. Provide the name of your project title
  4. Obtain a Pass (or higher) result in the prerequisite unit

Provide this information to your Unit Coordinator. Once approved you will be manually enrolled in the relevant unit by your Student Advisor (Courses and Careers).

 

Recommended Study Schedule

Students may determine their own schedule based upon credit transfers and personal study requirements. It is important to note that full-time students usually enrol in 24 units of credit per term and part-time students usually enrol in 12 units of credit per term. 


Engineering Practice (Industry Experience) and Report

An integral part of the Bachelor of Engineering course, and a requirement of Engineers Australia for course accreditation, is that each student must gain at least 12 weeks of approved industry experience in an appropriate area of engineering. The student must also submit a report indicating the type of work done, the degree of responsibility involved, the person(s) to whom the student was directly responsible, and the general activities of the employer.

This report must be certified as correct by the employer and submitted by the end of the second week of the term following the vacation period of employment.

Further information regarding the reporting requirements refer to the ‘Engineering Practice' document located here

Note that even if you are working full-time in industry whilst studying, you must still submit a report. However, if you are carrying out appropriate engineering work, you can use your normal employment as the basis of your report.

You should ensure that you submit your report in a timely manner prior to your expected graduation date. You will be assessed for eligibility to graduate immediately following Certification of Grades in your final Term of study. Please allow a 2 week turn-around time for assessment of your report. Failure to meet this deadline may result in a delay to your graduation date.

 

Degrees In Engineering with Honours

 

Engineering students will be eligible for Honours according to the University’s Grades and Results policy, which include all attempts at each unit within the course to determine the overall Grade Point Average (GPA).

 

The GPA of a student’s overall results throughout their course of study must be a minimum of 5.00 to be eligible for Honours. Failure to meet this GPA will result in students not being eligible for the award of First or Second Class Honours, regardless of their performance in the required 48 credit points of Engineering unit study (as detailed below).

 

Note - The CC31 course does not award Third Class Honours regardless of the students overall GPA.

 

The Honours calculation will only be calculated based on the first attempt of the required units (48cp) as outlined below:

 

Civil Major:

·         ENEG14005 Engineering Honours Project Implementation (12cp)

·         ENEC14014 Structural and Geotechnical Design (12cp)

·         ENEC14016 Traffic and Transportation Engineering (12cp)

·         ENEC14017 Water Resources Engineering (12cp)

 

Electrical Major:

·         ENEG14005 Engineering Honours Project Implementation (12cp)

·         ENEE14005 Capstone Power and Control Design (12cp)

·         ENEE14006 Embedded Microcontrollers (12cp)

·         ENEE14007 Electrical Machines and Drives Applications (12cp)

 

Mechanical Major:

·         ENEG14005 Engineering Project Implementation (12cp)

·         ENEM14014 Capstone Thermofluid Engineering (12cp)

·         ENEM14015 Dynamic System Modelling and Control (12cp)

·         ENEM14016 Fluid Machinery (12cp)

 

Mechatronics Major:

·         ENEG14005 Engineering Honours Project Implementation (12cp)

·         ENEX14001 Mechatronics System Design (12cp)

·         ENEE14006 Embedded Microcontrollers (12cp)

·         ENEX13003 Design of Mechatronics Elements (6cp)

·         ENEX13004 Advanced Dynamics and Robotics (6cp)

 

Rules for progression

The following explains the rules for progression into the Bachelor of Engineering (Co-op)/Diploma of Professional Practice (Engineering)

Students enrolled in the Bachelor of Engineering course who meet all the rules for progression in the Bachelor of Engineering (Co-op) and Diploma of Professional Practice (Engineering) courses may be invited to transfer into the Bachelor of Engineering (Co-op) and Diploma of Professional Practice (Engineering) course.

In the event of limited numbers in the remaining unfilled industry placements, only invitations to fill unclaimed placements will be made.

Where the number of students eligible for transfer is greater than the number of remaining unfilled industry placements, invitations to transfer shall be decided by the student's WGPA after completion of the first term in the second year of study.

 

Articulation and Credit Transfer

The course allows the recognition of students' appropriate previous study and experience gained from working in industry, through 'Recognition of Prior Learning' (RPL) and 'Recognition of Current Competencies' (RCC). Students will be assessed for credit transfer on a case-by-case basis and will be required to nominate units they wish to be considered for exemption from. Grounds for that exemption, through students' demonstration of prior achievement of the CQUniversity units' learning outcomes, must be documented and assessed as satisfactory by the Course Committee.

Students may only gain credit transfer for up to 67% of the overall course, on a units of credit basis, with a majority of Advanced Level units studied.

We are unable to assess credit transfer until potential students accept an offer to study with the University, however you are welcome to do a self assessment by using our Credit Transfer Kit.

Please note that study undertaken more than10 years ago is not normally considered unless the applicant can supply certified documents showing that they have been continually using the required skills in the work force. Generally only TAFE diploma level or above is recognised for credit at tertiary level.

Refer to the Credit Transfer website at http://www.cqu.edu.au/credittransfer for further details on the guidelines and application process.

 

Computing Requirements

It is a requirement of enrolment in this course that students have access to the CQUniversity website. Students may be required to undertake various components of study in the course using email and the Internet.

It is strongly recommended that students have access to a broadband connection or higher to access online student resources that would include but not limited to, email, internet, video streaming, electronic assessment submission.


Humanitarian Engineering Project

Humanitarian Engineering is the application of engineering to meet the needs of disadvantaged communities and in particular focuses on programs that are affordable, sustainable, and based on local resources. CQUniversity engineering students can now participate in humanitarian engineering activities through ENEG13001 Humanitarian Engineering Project unit. Students must complete a two-week mobility trip as a compulsory practicum for this unit and work on an international humanitarian engineering project for a developing or marginalised community. Places are limited to self-paying participants and recipients of a New Colombo Plan Mobility Scholarship. Through collaborative discussions with the host community, students will critically analyse the development context and identify wants, needs, strengths and opportunities for social innovation and make recommendations by applying principles of sustainable development, human-centred design and systems engineering. Students will create a project implementation plan, generate rapid prototypes and present your design to community members and assess its long-term viability, while demonstrating ethical conduct and professional accountability, team membership and team leadership, knowledge management and a creative, innovative and proactive demeanour.

 

Additional financial assistance for mobility trips is available by application for an OS-Help loan. As this unit is taken as an elective, students in the Mechatronics major are unable to enrol in this unit.